

Farmer's training manual

Developed by Dr. YSP University of Horticulture & Forestry COHF- Neri, Hamirpur (Under CS-04 Package of HPSHIVA PRF)

For ADB Funded
HPSHIVA Project
Department of Horticulture
Himachal Pradesh

Expert Team of Package of Practices of Subtropical Fruit Crops of Himachal Pradesh CS04 under HPSHIVA

Prof. Som Dev Sharma Team Leader DEAN, COHF Neri- Hamirpur, H.P.,

Mob.: 94183-23345

Prof. Virender Rana National Expert- Head, Department of Entomology, COHF

Entomology Neri- Hamirpur H.P., Mob.: 94186-02633

Dr. Rakesh K Sharma National Expert- Head, Department of Soil Science & Water

Soil & Irrigation Management, COHF Neri- Hamirpur H.P,

Mob.: 94184-56352

Dr. Vikas K Sharma National Expert- Senior Scientist, Department of Fruit Science,

Guava & Plum COHF Neri- Hamirpur H.P.,

Mob.: 70186-01976

Dr. Sanjeev K. Banyal National Expert- Associate Professor, Department of Fruit

Litchi& Kiwifruit Science, COHF Neri- Hamirpur H.P.,

Mob.: 94180-59914

Dr. Ajay K. Banyal National Expert- Associate Professor, Department of Fruit

Pomegranate & Science, COHF Neri- Hamirpur H.P., Mob.:

Persimmon 94180-01699

Dr.KumudJarial National Expert- Head, Department of Plant Pathology, COHF

Plant Diseases Neri- Hamirpur H.P., Mob.: 94184-34769

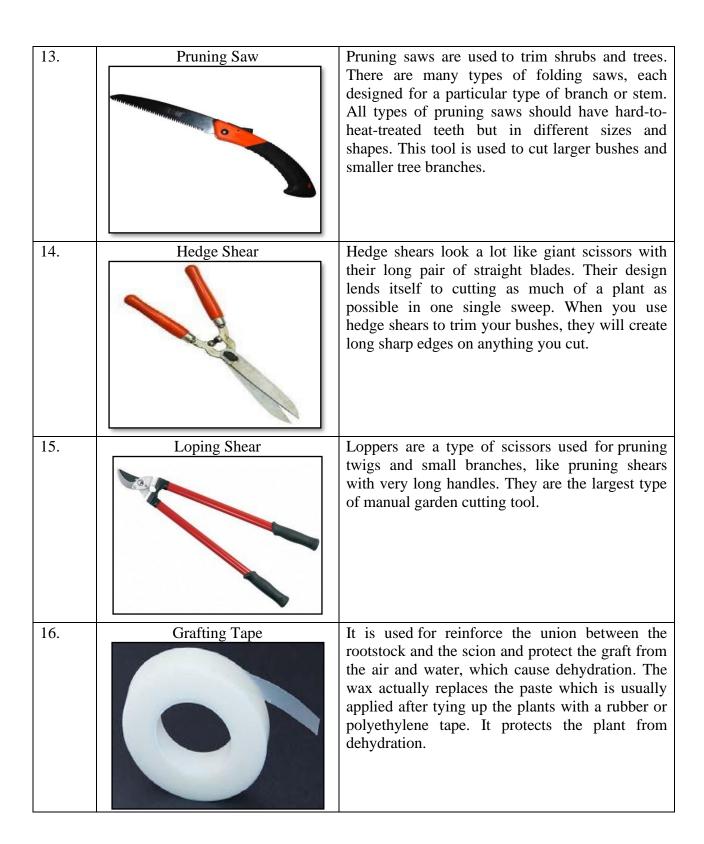
Implementing Agency of HPSHIVA

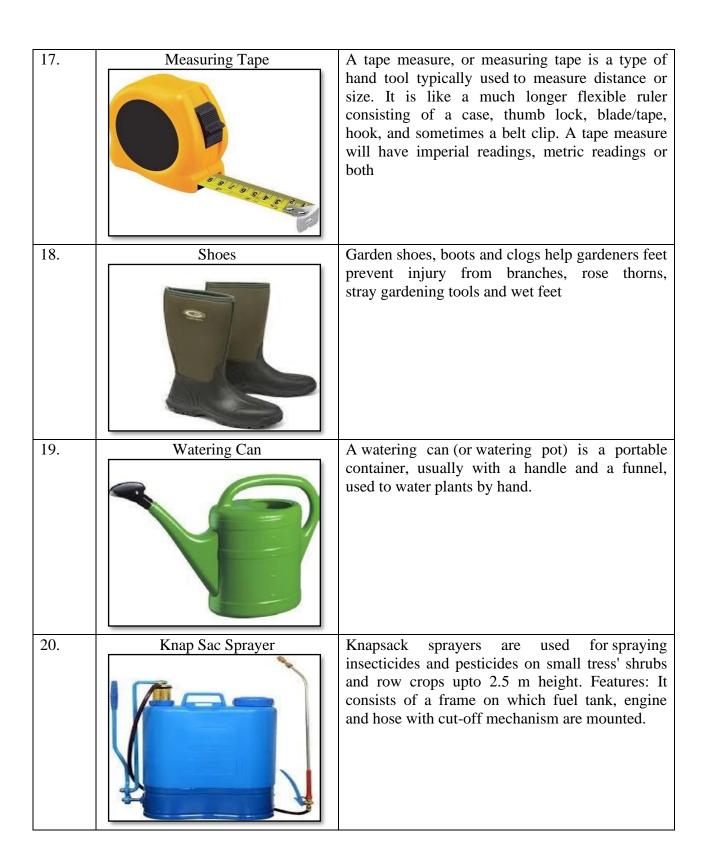
Name and Designation	e-mail ID	Contact Number
Project Director	devinderthakur155@gmail.com	+917018615569
Deputy Project Director (DPD) Horticulture		
Deputy Project Director (DPD) JSV		
Procurement Manager		
Project Coordinator (F & A)		
Nodal Officer	nodalofficerhpshiva@gmail.com	+917018134993
Finance Officer		
Assistant Procurement Manager	manojsharma3006@gmail.com	+9185809 58221
HDO's	sonalihorticulture17@gmail.com	+9197364 38376

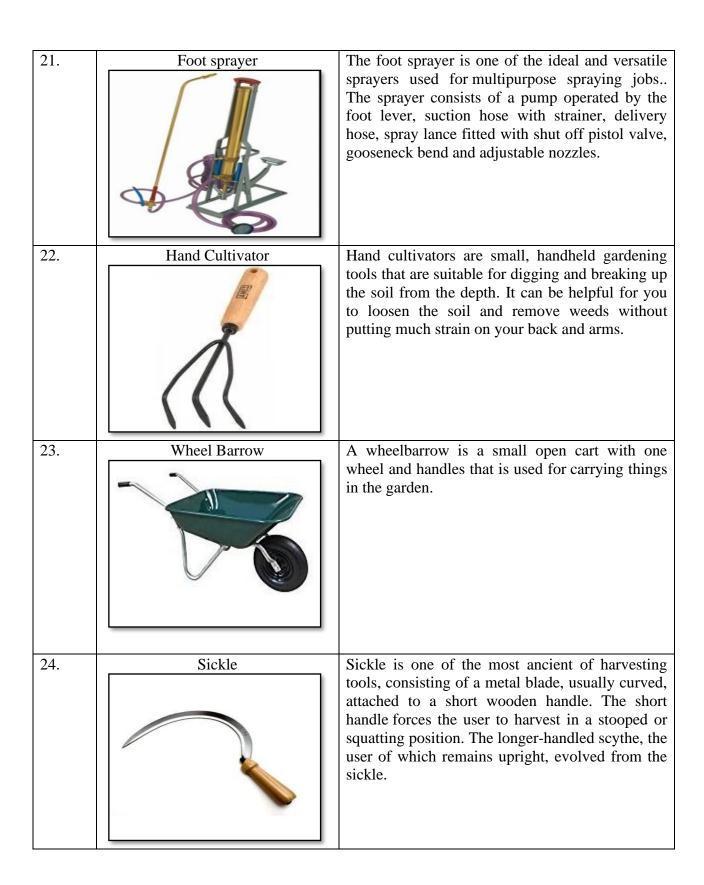
Important Notice

The information given in this compilation**Frequently Asked Questions** holds good only under optimum conditions. Theremay exist slight variation in some aspects due to several factors or can vary under different systems of management. Mishandling/negligence of the user can also result in damage/loss/non-reproducibility of results. In this regard, HP SHIVA team accepts no legal responsibilities.

Chapter-1


HORTICULTURAL TOOLS AND IMPLEMENTS

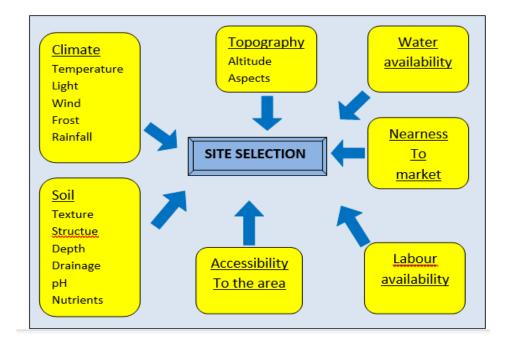



Sr. No.	Implement	Description and their uses
1.	Khurpi	The khurpi is used for removing weeds and unwanted plants from the crop. The tool is also used for breaking the surface layer, aeration and mulching of the soil.
2.	Pick Axe	A pickaxe, pick-axe, or pick is a generally T-shaped hand tool used for prying. Its head is typically metal, attached perpendicularly to a longer handle, traditionally made of wood, occasionally metal, and increasingly fiberglass. It is used for digging hard, compact and stony soils
3.	Kodali	Kodali is more of a streamlined tool. The Kodali has a wide base unlike Kodalo which is makes the work easy and efficient as while digging it pulls out large chunks of soil from the surface.
4.	Spade	It is used to lift and turn the soil. Also used for digging pits, preparing channels for irrigation and drainage.

5.	Fork	A garden fork, also called a spading fork or digging fork, is a tool for digging. It is used for loosening soil in gardening and farming. It is used similarly to a spade, but it can be pushed more easily into the ground. It does not cut through plant roots.
6.	Shovel	A shovel is a tool for digging, lifting, and moving bulk materials, such as soil, coal, gravel, snow, sand, or ore.
7.	Rake	A rake is a type of gardening or landscaping tool with a handle that ends in a head. You can use a rake for scooping, scraping, gathering, or leveling materials, such as soil, mulch, or leaves. Some rakes have flat heads; others have sharp metal tines that can break up compacted soil or rocks.
8.	Trowel	A trowel is a small garden tool which you use for digging small holes or removing weeds from nurseries and also used for transplanting.
9.	Axe	It is used to cut trees and branches

10.	Budding Knife	In this knife the apex of the blade is slightly curved which is used to make incision for bud on the rootstock. In some knives, on the rear side, a plastic blade is provided for opening the bark of the rootstock.
11.	Grafting Knife	It is used to separate the scion branch, make the scion branch defoliate and make an incision on the rootstock.
12.	Scateur	It is used for For cutting of the unwanted branches or twigs of the orchard tree, vines, scion sticks, defoliation etc. They are strong enough to prune hard branches of trees and shrubs, sometimes up to two centimetres thick.

25.	Tree Pruner	Tree trimmers and pruners, also called
		arborists, cut away dead or excess branches from trees or shrubs to clear utility lines, roads, and sidewalks.
26.	Gloves	Hand gloves is a great way to keep your hands
		safe and protected from insecticide/fungicides, germs, dirt, or mess. One can use them while cleaning, washing, gardening or using chemicals to prevent any hand injuries.
27.	Pegs	Wooden pegs are generally used for marking the
		position n ground while layout for different orchards.
28.	Pruning Ladder	A tripod orchard ladder is a portable, self-
		supporting ladder used in orchards and landscape maintenance, for tasks such as pruning and fruit harvesting.


Chapter-2

ORCHARD PLANNING, LAYOUT AND PLANTING

Establishment of an orchard is a long-term investment and deserves a very critical planning. The primary consideration before setting up an orchard is to analyze the available resources, which are essential for a successful fruit production. Careful planning results in optimum production, high returns and long tree life. Poor initial decisions can be costly and difficult to correct later.

Site Selection

Site selection is one of the most important decisions a grower will make over the life of an orchard. Virtually every aspect of production and marketing is, to a degree, affected by site. It affects cropping consistency, fruit quality, pest pressures and marketing success. Proper selection of site is important. Selection may be made based on the following criteria.

Following factors should be considered before selection of a site for establishing a new orchard:

- 1. Suitability of soil, its fertility, the nature of subsoil and soil depth.
- 2. Site must have proper drainage and no water stagnation during rainy season.,
- 3. Irrigation water must be of good quality.
- 4. There must be proper transport facilities either by road or rail within the reach.
- 5. Whether the climatic conditions are suitable for the fruits to be grown and are whether site is free from the limiting factors such as frost, hailstorms and strong winds
- 6. Whether there is assured demand in the market for the fruits to be grown,
- 7. Whether the orchard is a new venture or whether there are already other growers,
- 8. Availability of labour

1. SitePreparation

Fruit production development takes three to five years. During this period the orchard goes throughdifferentstagesofdevelopment. The following table summarizes the main stages of fruit orchard development:

MainStagesofOrchard Development

Time	Main stage	Sub-stage	Main activities
		Bush cleaning	Cleaning and weeding
		Landpreparation	Looseningsoil
			Ploughing
			Harrowing
			Leveling
			Terracing
			Bunding
3-4month			Fencing
beforeplanting			Design pattern
			Establishrow&plantdistance
			Installirrigationsystem
			Digging holes

	Orchardlayout	Manure&fertilizer application
		Fillingupandmarking holes

Time	Main stage	Sub-stage	Main activities
		Plantingsaplings	Saplingpreparation
			Plantingsaplings
			Basinformation
	Planting		Staking
		Tantingsapinigs	Mulching
			Irrigation
			Headback
			1st-3rdyearshapingcut
1 et ard			Staking
1 st to3 rd year			Proppingvs.trellising
			Clothpinning
		Trainingfruit tree	Basinformation
			Staking
			Mulching
			Irrigation
			Weeding
			Pest&diseasemanagement
			Plantnutrition
			4 th -5 th yearshapingcut
			Staking
			Proppingvs.trellising
			Clothpinning

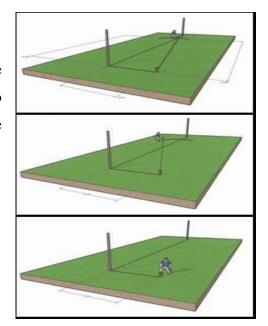
		Cl	Basinformation
, thth			Staking
4 th to5 th year	Orchardmanagement		Mulching
		Shapingfruit trees	Irrigation
			Weeding
			Pest&diseasemanagement
			Plantnutrition
5 th year			Pruning
onward		Mainproductionperiod	Propping
			Irrigation
			Pest&diseasemanagement
			Plantnutrition
			Harvesting

Orchardlayout

Orderly and systematic arrangement of fruit plants on a piece of land is known as orchard layout.

Procedure for selection of planting system/layout

- Identify the best planting system for the area (depending on topography, tree stature etc.),
- Establish a base line and mark the positions of the trees along this line putting wooden stakes in the ground.
- Another base line at right angle to the first base line, is then marked along with the other edge of the field with the help of a carpenter square or a cross staff.
- The right angle can also be drawn with the help of measuring tape.
- One end of this tape is fixed at 3 meter distance from the corner along the first line and the tape is then stretched along the second base line for a distance of 4 meter.
- The diagonal distance between these two points should be 5 meter
- The wooden stakes are put in the ground at the desired distance along the second lines.


- All the four rows are thus established and staked. Three men, one putting the pegs in the
 field and other two correcting alignment, while moving along the base line, can easily
 layout the whole field.
- For laying out of an orchard according to the triangular system, a base line is set on one side of the field as in the square system.
- Large triangle with a ring in each corner (made of heavy wire or chain) is used. The sides of this triangle are equal to the distance to be kept of the plants in the orchard.
- Two of these rings are placed on the stakes of the base line. The position of the third ring indicates the position of the plant in the second row. This row then is used as a base line. The whole area is laid out in a similar manner.

Basicmeasurement

The measurement of the future orchard depends on the type of fruit, the intensiveness of the production and the size of the matured tree (dwarf, semi-dwarf, etc.). According to these characteristics the population density varies for the same size of area. Onceyouhavedeterminedthespacingforyourtrees, you may proceed with the orchard layout.

EstablishingaStraightLine

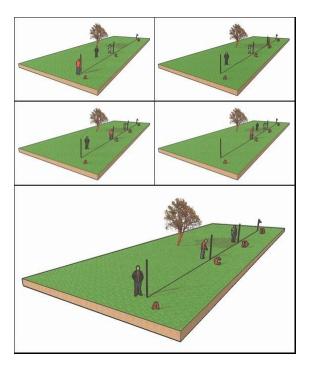
- 1. Thefirsttargetistoestablishabaseline.Allothermeasureme ntswillbeconductedin relation to its position from the base line. The base line is a straight line between two opposite points on the field. The two points will be marked with two poles. (A and B)
- 2. Athirdpole(C)willbesetonthelineroughlyonethirdofthew aytowardthein between the first two poles (A and B).

- 3. Finallyafourthpole(D)shouldbesetonthelineroughlyhalfwayinbetweenthethird (C)andsecondpole (B).
- 4. Returntothethirdpole(C)andcorrectitspositiononthelineaccordingtheposition of the first (A) and fourth (D) pole. Then go back again to the fourth (D)pole to correct its positionaccordingtothepositionofthethird(C)andsecond(B)pole.Thiscorrectionis repeated until all four poles are on a straight line between the two points on the field.

EstablishingaRightAngle

3-4-5Method

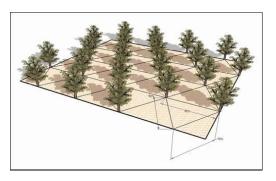
Whenthebaselineissetoutinasatisfactorymanner,the nextstepistomeasurearightangle (90°) and form perpendicular lines.

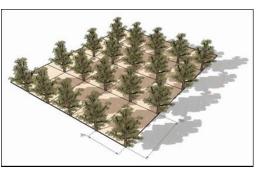

- FrompoleAmeasure4malongthe baseline and mark the pointwitha peg.
- 2. Next, tie a 3 m long string to pole A withabignailorpointedstickattached to the other end.
- Thendrawahalfcircleinthesoilwith the nail/stick while making sure to keep the string constantly stretched.
- 4. Next, draw another half circle in the soil, from a string that is 5 mlong that will be tied to the peg.
- 5. Put another peg where the two circles cross each other. In reference to the newly formed triangle's dimensions, thismethodiscalledthe3-4-5method.

PhysicalLayout

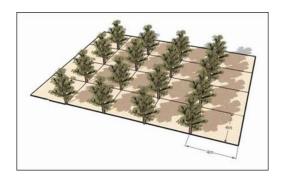
After the site has been prepared, the planting system for orchard establishment should be selected. Theorehard layout depends on the slope of the land, their rigation system, the drain age and the tree species to be grown.

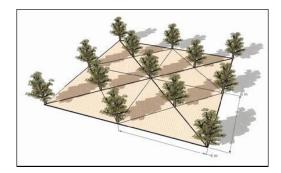
Thebasicactivities are the following:


- Establishastraightline(baseline)fromtheedgeofthefield,mostcommonlyaroad, hedge or

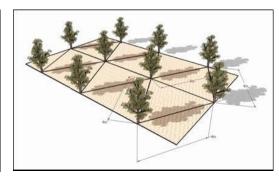

fence.

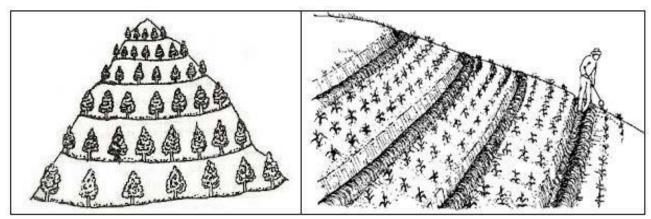
- Marktherightangle
- Thebaseline formsabaserowandtheotherline,runningatarightangletothefirst, forms the line at which the first tree in each row is placed.
- Usingthebaselinesasreferencepoints, at apeisstretchedalong one line and pegsare put at the desired intervals of tree spacing.


Orchard layout is an important component and it should aim at providing maximum number of trees per hectare, adequate space for proper development of trees and ensuring convenience in orchard cultural practices. The main objectives of orchard designing are: (1) To have efficient utilization of orchard space and other resources, (2) To have maximum solar radiation interception and distribution within the orchard canopies in order to achieve maximum fruit quality and yield, (3) To minimize competition between trees for nutrients and moisture by having proper tree spacing, and (4) To have compatibility with various management practices such as pruning, thinning, harvesting, pest control etc. The following are different planting systems commonly followed in planning fruit orchard:


Triangular Pattern

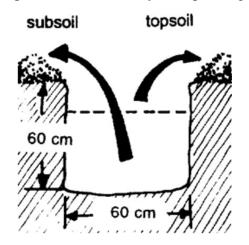

Rectangular Pattern

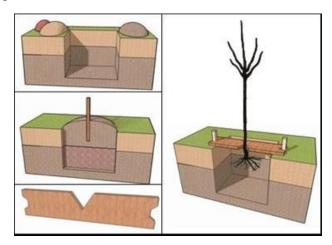

Square Pattern


Quincunx Pattern

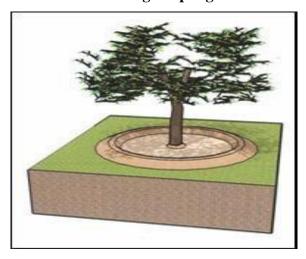
Equilateral pattern for orchard layout

Contour system of planning in Hilly areas


The most widely used planting systems in fruit crops under flat lands are square or rectangular and contour layout in hilly terrains. The orientation of planting should be North–South direction.


Preparation of field

- Deep ploughing should be done and raised bed (2-meter-wide at bottom x 1.5-meter-wide at top x 45 cm height) should be prepared one month before planting.
- Where planting is done on steep sloppy sites, such soils are more prone to erosion and fast depletion of moisture, thus require frequent irrigation. On undulated, sloppy topography contour and terrace orcharding having about 1 m wide terrace is recommended for commercial high density orcharding.


Digging of pits and filling

Planting should be done in pits of 60 x 60 x 60 m³ size and pits are dug about a month prior to planting and disinfect by intense solar radiation. Compost and manure is an important part of the whole preparation, because additional organic matter content improves the soil's physical properties and provides valuable nutrients for the tree. Each pit should be filled with top soil mixed with farmyard mature (20kg), neem cake (1kg), and single super phosphate (500g) as depicted below. After filling the pit, watering is done to allow soil to settle down. Irrigation is provided immediately after planting by drip irrigation

Planting a sapling


Basin Around the Tree

PlantingFruitTree

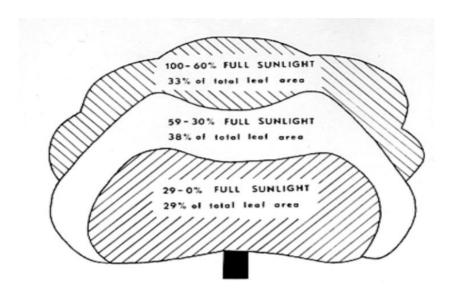
Planting

- Place the tree in the hole so that the potting mix mark is slightly higher than ground level to allow for some sink. Fill the hole up to half level with soil and press it gently towards the root.
- Fill the hole with water and allow it to drain before completely filling the hole with soil.

 Do not place fertilizer in the planting hole as this can burn sensitive roots.
- Apply a layer of organic mulch in 1 m diameter around the trees.
- Planting should be done during spring season or rainy season depending on availability of irrigation water.
- Polybag raised plants can be planted without disturbing their roots.
- Staking should be provided to young plants to keep the plant straight and avoiding breakage of shoots by winds. Use 50-80 cm long wooden sticks and tie the main branches with strings. Wooden sticks should be treated with chloropyriphos 2 ml/litre for termite protection.

StandardforSapling Quality

Chapter-3


TRAINING AND PRUNING IN FRUIT CROPS

Training

Traininginvolves a physicaltechniquethatcontroltheshape, size and direction of plant growth. Training young fruit trees is essential for proper tree development. The goal of tree training is to direct tree growth and minimize cutting. Training includes bending, twisting, or fastening of the plant to the supporting structure. Awell-trained fruit trees will have strong branches with wide crotches.

Principles of training

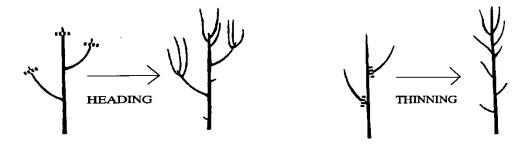
- Maximum utilization of light.
- Avoidance of built-up microclimate congenial for diseases and pest infestation.
- Convenience in carrying out the cultural practices.
- Maximizing productivity with quality fruit production.
- Economy in obtaining the required canopy architecture
- To develop strong framework of scaffold branches.
- To admit more sunlight and air to the centre of the tree.
- To expose maximum leaf surface to the sunlight.
- To direct the growth of the tree so that various cultural operations, such as spraying and harvesting are performed at the lowest cost.
- To protect the tree from sunburn and wind damage.
- To secure a balanced distribution of fruit bearing parts on the main limbs of the plant.

Sunlight received in different parts of plant canopy

Pruning:

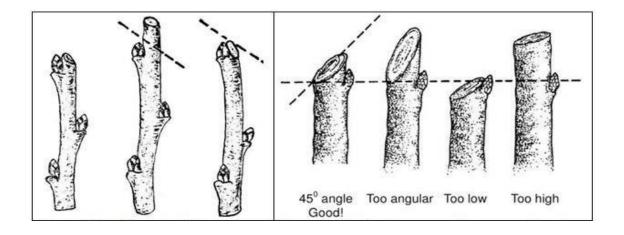
Pruning is the proper and judicious removal of plant parts such as shoots, spurs, leaves, roots or nipping away of terminal parts.

Principles and objectives


- To establish a balance between vegetative and reproductive growth
- To make the plant more productive and bear quality fruits.
- To increase longevity of thetree, make it manageable and to get maximum returns from theorehard.
- To control the size of the plant and the form (structural make up of the plant) which involves number, placement, relative size and angle of branches,
- To improve quality of fruits by better light distribution.
- To remove diseased, criss-crossed, dried and broken branches,
- To remove the non-productive parts in order to divert the energy into those parts that are capable of bearing fruits,
- To develop proper proportion of root- shoot ratio and regulate the fruit crop.

Types of pruning:

(1) heading back and (2) thinning out.


Heading back: Itconsists of cutting back the terminal portion of a branch to a bud thatis, the terminal portion of twigs, canes, or shoots are removed, but the basal portion is not.

Heading back induces lateral shoot formation by inhibiting the effect of apical dominance.

Thinningout:

isthecompleteremovalofabranchtoalateralormaintrunkthatis,theentiretwig,cane,orshootisremoved. Thinningoutcorrectsanoverlydense area or removes unneeded branches, or undesirable growth such as upright branches that compete or interfere with the leader and branches that will be structurally weak because of narrow crotch angles.

Ways of making pruning cuts

When do we manage the canopy?

• It's best to prune a fruit tree during winter because the level of physiological activity is much slower and there is no crop on the plants. Summer pruning can also be done for controlling tree size and removal of water shoots, dead and diseased wood. Microorganisms (e.g.

bacterial and fungal infections) are plentiful during the summer months. Pruning in the summer creates wounds that make trees more susceptible to infections

Pruning and training procedure of important fruit crops

Guava

In early years of planting properly strong framework of the plant has to be developed by allowing widely angled branches and removal of weak crotch angles. During training period heavy heading back cuts should be done to maintain vigour of shoots. Productive plants need pruning to maintain the appropriate size and shape. Proper management practices help to increase yield quality of produce and management of pests and diseases.

Technology for winter guava production and ultra high density planting under sub-tropics of Himachal Pradesh

Planting of guava in July (2 x 1 m)



Heading back the plants at a height of 30-40 cm from the ground level in September month

Retain 3-4 shoots only

Prune the shoots at the time of flowering at two leaf pair in first fortnight of April

Multiple shoots emerge below the cut end

Shoot initiates and flowering takes place at end of June and fruit set completes by first week of July

Further prune the shoots at two leaf pair in end of May or first week of June

Shoot pruning at end of August above the fruit area

Fruit harvesting in November month

No irrigation and no fertilizer application till to last week of May (i.e completely devoid of water and fertilizer)

Apply irrigation and fertilizers at end of May or first week of June

Pruning at flowering stage in first fortnight of April

Initiates flowering in end of June on current season growth and completes fruit setting by first week of July

Continue shoot pruning every year as per above schedule upto 4-5 years to maintain the tree spread

HIGH DENSITY ORCHARDING OF GUAVA (Training and Pruning)

High Density Planting

Field Planting (3.0×3.0m)

Heading back the trees at a height of 60 cm from the ground level after 3 months of planting

New shoots emerge below the cut point and lowermost shoot should be 30cm above the ground

Retain 15cm apart 3-4 shoots (equally spaced in all directions) 30 cm above ground level

Prune the shoots after 3-4 months of shoot growth (cutting back to 50% of their total length- shoot length should be 70-80 cm) i.e. 35-40cm heading back

After winter (1st fortnight of February) Shoot pruning should be done by heading back to 50% of their total length- shoot length should be 70-80 cm)

During 1^{st} fortnight of May Shoot pruning should be done by heading back to 25% of their total length- shoot length should be 70-80 cm)

For winter season fruiting, Shoot pruning at two leaf stage during 2^{nd} fortnight of June to induce cropping

During end of August-1st fortnight of September pruning of non-bearing shoots to 25% of total shoot length and thinning out of crowding shoots should be done)

Continue shoot pruning (50%) during June every year for winter cropping and to maintain the tree shape and size

MANGO

Establishment of scaffold branches

First order (1st **Order**): Head back plants at 45-50 cm when they attain the height of 80-90 cm, this may reach within 3 month of planting.

Second order (2nd Order): As a result of head back new shoots emerge, 3-4 new shoots should be retained at least 30-45 cm above ground level.

- Ideal canopy can be developed by thinning out the shoots, so as to retain 3-4 shoots distributed evenly in all directions. These shoots develop as primary branches.
- As shoots become mature i.e. shoot colour changes from green to brown, second cutting should be performed. New shoots take about 4 months to mature.
- At this stage if new shoots are at smaller crotch angles, then increase the crotch angle by bending the shoot using rope/thread. Use a jute rope instead of nylon based/poly threads for binding.

Third order (3rd order): Heading back to 50 per cent should be performed on growing shoots when they attain 70-75 cm length. This will take 3-4 months to reach the stage for second cut to primary branches. This cutting also induces new growth.

- Crowding shoots should be removed so that 3-4 shoots are retained on each primary branch.
- New shoots emerge as a result of heading back and only 3 shoots are now retained in all directions.

Fourth Order (4^{rth} order): Heading back of 50 percent should be performed on growing shoots when they attain 70-75 cm length.

Fifth Order (5th **order**): Heading back to 50 per cent should be performed on growing shoots when they attain 70-75 cm length.

- Sharp secateus should be used to ensure smooth sharp.
- This initial training creates open and spreading type canopy of trees.

Pruning

- Pruning is required to regulate the growth and fruiting of mango tree under HDP. Pruning should be done immediately after fruit harvesting i.e. July-August by heading back25-50% branches particularly bearing twigs.
- The long-term sustainability of a mid-density orchard depends on an effective canopy management. In general, every pruned shoot produces three new shoot but occasionally more than three.
- Light or moderate pruning increases yields in mango orchards, while heavy pruning often inhibit fruit production for several seasons. However sometimes there is need to remove internal long branches affected by diseases or insect pests.

HIGH DENSITY PLANTING TECHNOLOGY OF MANGO FOR HIGHER PRODUCTIVITY & QUALITY One month old plantation Two month old plantation Three month old plantation Heading back at 45cm above ground level Emergence and retention of three braches at 2nd order Emergence and retention of third order braches after heading back 2nd time Branches ready for heading back (4th order) Heading back of branches at 4th order Flowering at 5th order **Fruit Development Pruning after harvesting** New flush growth **Uniform New flush growth Uniform flowering** Future orchards-through canopy architecture

Citrus

Training

- Training operation to develop structural framework should start after 6 months of planting when the plants attain a height of 45-60 cm.
- All branches up to 30 cm height should be removed and first ring of branches should start 30cm above the ground.
- During the second phase, select 3-5 primary branches above 30 cm height in all directions.
 The selection of primary, secondary and tertiary branches should remain continuous during next year.
- The orientation of primary branches should be toward peripheral canopy at about 60⁰ angle with stem and upright growing branches should be thinned out.
- During development of frame structure training should be done continuously for first two years.
- The maximum height of grown tree should not exceed 2.5 m and canopy should be developed in round dome shape.

Pruning:

Citrus trees may be pruned at any time, but it is better to avoid those periods when trees are in active growth. The best time for pruning the bearing trees is immediately after the harvest of the fruits. For getting better yield of high quality fruit, pruning of such branches is necessary to open up the tree for proper ventilation and provide more chances for inner wood to bear fruit. 10-15cm head back of one year old shoots should be done in bearing tree. Removal of dead and dried wood is necessary to check the further spread of diseases.

- Hard pruning of thick shoots should be discouraged.
- Removal of water sprouts and water shoots should be continuous except in May-July.
- Pruning of dried, intermingled and diseased branches should be done during winter months.
- Pruning should be done immediately after harvesting.
- Apply 10% Bordeaux paste on the cut end and spray with oxycholoride 250g+ 20gstreptocyclene in 100ml water of plant after training and pruning.

LITCHI

TRAINING

- Training of litchi tree in the initial stage is essential to provide the desired framework.
- Remove all branches below 30 cm to provide a wanted shape and induce the growth of the trunk and the crown of the tree:
- During the second phase, select 3-5 primary branches above 30 cm height in all directions.
 The selection of primary, secondary and tertiary branches should remain continuous during next three years.
- The orientation of primary branches should be towards periphery in all directions of the canopy at 60 ⁰ angle with stem.
- Cut branches that compete with the central leader or are together or crisscross or the branches having less than 45° angle.
- The centre height of plant should be restricted at 3.0 m.

PRUNING

- Pruning in litchi trees has been found effective in terms of increasing productivity. Pruning is necessary to correct or maintain tree structure and improve light distribution.
- Harvesting the fruit with the panicle along with 20 cm of twig induces new flush and improves the next year bearing.
- Besides bearing twigs, light pruning of other branches up to 20 cm heading back should be done just after harvesting.
- Pruning of centrally growing upright branches should be done periodically (Once in 2-3 years) to facilitate proper aeration and light penetration inside canopy which would help in production of better yield and quality fruits.

POMEGRANATE

Multi-stem training system

- Healthy saplings of 5-6 months old age should be planted and trained in multi-stem training system (3-4 stems) to avoid losses of stems/plants by stem borer or any other disease.
- Training operation to develop structural framework should starts after 3 months of planting, when plants attain a height of 45-60 cm.

- For multi-stem system, 3-4 healthy suckers should be allowed to develop and other suckers must be removed regularly.
- All the branches up to 30 cm height should be removed.

Multi-stem system

- During the second phase, select 3-5 primary branches above 30 cm height in all directions. The selection of primary and secondary branches should remain continuous during the next year up to February month.
- The orientation of primary branches should be toward peripheral canopy about to 60° angles with stem.

Training of Bhagwa plants (8-9-month age)

Pruning

- Pruning should be done during winter months by removing dried twigs, inter-mingled branches, water shoots and sprouts.
- All upright growing shoots should be removed during growing period.

- Bearing to induce cropping, heading back of tertiary branches/shoots of 5 mm thickness should be practiced during winter season.
- Hard pruning of thick shoots should be discouraged.
- Major pruning is practiced during winter months and light pruning of new growth should be done during fruit setting by removing all the new water shoots and water sprouts.
- Immediately after training and pruning, apply Bordeaux paste on the cut ends (>10 mm thickness) of the plants.

PLUM

TRAINING

- In general, open centre or modified leader system are adopted in plum which vary according to variety.
- In varieties with spreading type of growth habit open centre system (suitable for mid hills of Himachal Pradesh) should be followed.
- Whereas, modified central leader training of plant keeping 4-5 scaffold branches is considered better to avoid scorching summer sunlight.

OPEN CENTRE SYSTEM

- Cut back the plant at 40 cm above ground level after planting. The tree produces 3-6 laterals in addition to the central leader.
- During the 1st winter allow growth of 3-5 scaffold branches with wide crotch and remove rest all branches including the central leader.
- The branches are then headed back to 1/4th of the growth
- 2-3 secondary branches should be retained on primary branches during 2nd dormant pruning. Care must be taken so that each secondary leader is placed at about 30-40 cm distance from each other.
- Leader branches are pruned more severely to maintain staggered height of secondary branches.
- Avoid overcrowding of branching by developing branch leaders at different heights through severe pruning of vertically growing branches.
- This completes the formation of a head (crown) and the selection of secondary branches.

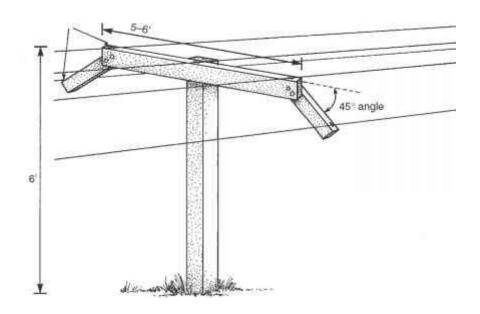
MODIFIED LEADER SYSTEM

- It takes 3 years in plum to train the plant on modified leader system.
- The transplanted plants (about 1.0 m high) should be cut back to 40-45 cm in the first half of the January, branches, if any on the main stem should also be pruned to short stubs.
- During the first dormancy select 4-5 branches at 15-20 cm vertical height from one another around central branch axis and remove all other branches from the axis which at this stage is allowed to grow as leader.

- First branching should be maintained at least about 30 cm above the ground.
- During second year the primary branches will produce secondary limbs, as the plant grows new branches will come out from the first year extension growth.
- With tree growth in 3rd year many new shoots arise form primary and secondary shoots.
- Keep only the wide angled shoots which are evenly spaced and remove all other branches.
- Head back the central leader adjacent to outward growing lateral branch, when a good framework of the plant has been developed at the end of the year.
- As a result a plant trained on modified leader system becomes ready to bear fruit.

PRUNING

- In general, plum varieties bear fruits on spurs, while some fruiting takes place laterally on one year old shoot. The spurs bear for 5-6 years. So, it requires pruning in each year for promote spur renewal.
- To obtain proper fruiting the bearing, plum trees should grow 25-30 cm every year. For this head back to 50% and 25-30% thinning in Santa Rosa is done in Himachal.
- All the dried/dead, broken and diseased wood should be removed during pruning.
- The scaffold branches should start at least 30 cm above ground and other scaffold are kept at 15 cm away from each other in a spiral arrangement, branches with wide angle are retained others are removed.
- Head back the central leader in first dormant pruning allowing growth of scaffold branches which are pruned by removing 1/3rd growth. Other weak/unwanted branches arising form main stem and removed.
- 2-3 suitably spaced branches on primary scaffold are retained during second winter pruning which are pruned to $1/3^{\text{rd}}-1/4^{\text{th}}$ of their length.
- The undesired, weak and crowding branches are removed during pruning, besides water sprouts, dried/died, diseased and intermingling branches.
- A branch has to be maintained in vegetative and reproductive growth of the plant through pruning in bearing trees. Only light and corrective pruning is required during pre-bearing period.
- Heavy heading back encourages development of long upright water sprouts thus, should be avoided.
- Regularly remove all the water sprouts coming out from crown portion of the plant.
 Heading back of lengthy branches to 50% should be performed after cropping for 4-5 years.
- Bordeaux paste/paint should be applied on each cut which is thicker than pencil thickness (4-5mm).


KIWI FRUIT

TRAINING

- T-bar is the most common and preferred method for training of kiwifruit vines.
- In T-bar a spacing of 3 meters between rows and 5 meters between plants in each row is maintained for getting better fruit production of quality fruits.

TRAINING ON T-BARS

- In T-bar fence, the pillars of iron or concrete about 1.8 m in height above the ground level are erected at a distance of 5m from each other in a row.
- A cross arm (1.5m) is fixed on each pole, which carries outrigger wires.
- The laterals arising from the main branch are trained on these wires. A strongly growing shoot is selected as the main trunk to carry the vine up to the wire.
- The vine is staked to provide support and is tied at frequent intervals to prevent wind damage and to avoid the twisting of vine around the stake.
- As soon as the vine attains a height of 2 m or reaches the wire, one permanent leader/ arm is allowed to grow out in each direction along the centre wire.
- To achieve this, the leader is trained one way along the wire and a shoot slightly below the wire is selected and trained in the opposite direction as the second leader.
- Alternately, the main leader can be cut just below the wire to force the production of two leader growth, which can be trained as leaders in two opposite directions, along the wire.
- From the permanent leaders, fruiting arms 25-30 cm apart are selected at right angle along both sides of each leader.
- The first crop of fruit comes on these arms and later crop forms on laterals that develops from them.
- Fruiting arms should not be trained along outrigger wires, because shoots from then will compete with the fruiting arms which originate directly from the leader, result in a dense tangled growth which adversely affect management and performance of the vine.

PRUNING

Kiwifruit vine bears fruit on current season's growth that originates from one year old wood. Only the basal buds at nodes 4 to 12 on the fruiting shoot produce fruits, so it requires open pruning, which allows access for pollinators during the flowering period, better penetration of sunlight and air movement around the vine.

The following principles should be kept in mind at the time of pruning kiwifruit vines:

- 1) The fruit is developed only on current season's growth arising from the bud developed in the previous year.
- 2) Only the basal buds of nodes 4 to 12 on current season's growth are productive.
- 3) Vine grows 2 to 3 m every year, which becomes overcrowded and trangled if not controlled by both summer and winter pruning.
- 4) The shoots developed on older wood by heading back will not fruit normally in the first season.

In the beginning, a lateral arising from main leaders is cut back in the winter so as to provide enough space for 4 to 5 fruiting shoots at an interval of 4-5 buds between two such shoots. Light summer pruning is done for shortening of fruiting arms, thinning out of criss-cross and shading shoots.

DORMANT PRUNING

- In dormant pruning, the fruiting lateral is cut back to two vegetative buds beyond the last fruit.
- In the second year, these vegetative buds will produce the fruiting shoots, which will be pruned again.
- The arms on lateral shoot are pruned and allowed to fruit for 3 and 4 years.
- After this the lateral is removed from the main branch and other laterals are selected and
 pruned accordingly so that the balance between vegetative and reproductive growth is
 maintained for the continuity in the fruit production.
- Dormant pruning is done during Jan-Feb. The cut portion of the shoots is pasted with Bordeaux paste.
- The shoots which grow from the first bud carries none or few flowers, thereafter, the number of flowers/shoot increases to a maximum of 4, 5, 6 which remain constant along the entire length of the left cane. The fruiting laterals which have lost their vigour and are overcrowded, are removed to encourage the development of new laterals.

SUMMER PRUNING

- The summer pruning is done by shortening back of fruiting arms, thinning out of crisscross tangled and shading shoots.
- The strong uprights or the shoots arising at undesirable points are pruned in spring when they have not grown too long.
- Summer pruning starts from spring continues throughout the growing season.

PERSIMMON

TRAINING

- Persimmon is trained to modified central leader system
- The trees should be kept low headed by heading back at 45 cm from the ground while planting.
- Strong framework of 4-5 primary shoots with wide crotch angle should be developed around the trunk, above 30 cm from the ground.
- In the next two years secondary and tertiary branches should be developed.
- The plants should be staked to keep in a straight position, which helps in selecting the well-spaced laterals in the coming season.

PRUNING

- The broken and interfering branches should be removed.
- After developing the proper framework of the tree, little or no pruning is needed except removing dead, diseased, broken and interfering branches.
- Old trees may be given severe pruning to regenerate new growth for regular production.
- Remove dried/diseased fruits and twigs regularly and burn them completely to reduce the disease and pest inoculum in the persimmon orchard.

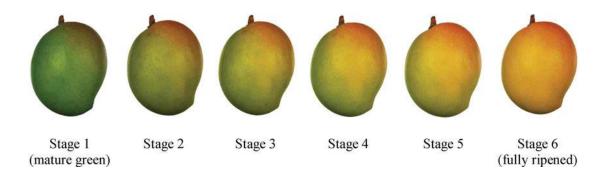
PECANNUT

TRAINING

- To get the proper shape and size, it is essential to carry out the training and pruning in pecan nut.
- In pecan nut, plants are generally trained to central leader system.
- The lowest branch should be kept to a height of 60 cm from the ground level.
- All 5-6 primary branches should be developed spirally at a distance 20-30cm from one above another.
- Wide crotch angle should be developed in between central leader and primary branches.
- During the initial 4 years of planting, frame work should be developed.
- After development frame work, light pruning on matured pecan nut trees should be done.
- Pruning should be done during winter months.
- Heavy pruning not recommended as it results in vigorous vegetative growth.
- Only damaged, dried and diseased wood should be removed.
- Overcrowded and intermingled branches should be thinned out.
- Central leader should be headed back at a 3 m height. Pecan nut is generally pollinated by wood.

PRUNINGPROCESS

The pruning of fruit tree sisone of the most important activities in determining the yielding capacity of the tree. Its importance relies on four aspects:


- Todevelopastrongandsturdyframework
- To maintain the desired shape of the tree for light interception, fruit development and easy operations
- Tomanagethebalancebetweenvegetativeandgenerativegrowthofthetree
- Tocontrolpestsanddiseases

Chapter-4

MANGO

Maturity Indices

- Slight colour development on the shoulder
- When one or two ripe fruits fall from the tree naturally (Tapka stage)
- Specific gravity of the fruit should be in the range between 1.01 and 1.02
- White powdery like appearance on skin of mature mango.
- Change in fruit shape (fullness of the cheeks)
- Change in skin color from dark-green to light-green to yellow (in some cultivars)
- TSS 12-15 % is optimum.
- Change in flesh color from greenish-yellow to yellow to orange.

COLOUR CHANGES AT MATURITY

Harvesting

- Harvesting is done by hand picking
- For export, the approximately 1.0 cm fruit stem/pedicel is cut along with fruit with the help of sharp scissors. Then fruits are kept upside down for two hours so that the latex flows out from the fruit completely.

Grading

The export quality mangoes are categorised into three grades:

• Category-I: 200-250g

• Category-II: 251-300g

• Category-III: 301-350g

Washing

Fruit should be washed and dipped in water containing fungicide for the control of postharvest diseases.

Ripening

Mango does not normally need any post-harvest ripening treatment for local marketing. It is a general practice to harvest fruits early in the season (premature stage) to capture early market. These fruits do not ripe uniformly without ripening aid. Such fruits could be ripened uniformly using Ethrel in a ripening chamber.

Packaging

- CFB boxes of 5kg and 10kg capacity are used for packing and shipping of mango fruits for domestic markets as well as export purposes.
- Paper scraps, newspapers, are commonly used as cushioning material for packaging of fruits.
- Wrapping of fruits individually in honeycomb nets help in getting optimum ripening with reduced spoilage.

Storage

- The mature green fruits can be kept at room temperature for about 4-10 days depending upon the variety.
- For exports, harvested fruits are pre-cooled at 10-12^oC and then stored at an appropriate temperature.
- The fruits of Mallika at 12°C, Langra at 14°C and Chausa at 8°C with 85-90% relative humidity can be stored for 3-4 weeks.

SWEET ORANGE

Maturity indices

• Sweet orange fruits should be harvested when they have attained adequate size and 12:1 (TSS: Acid ratio) in juice.

- The time for picking different cultivars varies form end of October to 1st week of February.
- In mosambi, rind colour is pale yellow or whitish, while in blood red variety colour of rind is fully red & ratio is 10:1.

Maturity Indices for Sweet Oranges

Harvesting

- Harvesting season within the state varies with locality and the cultivars.
- Harvesting is done with a clipper retaining a non-protruding short fruit stalk on the branch.
- Harvesting during early hours of the day when there is dew on fruits and harvesting immediately after rains should be avoided.
- The Light green colour of the rind should not exceed one fifth of the total surface area of the fruit for transportation to remote areas.

Grading

The sweet orange fruits are graded as per the size into small, medium and large grades depending upon the cultivars.

Packaging

Citrus fruits are packed in CFB. Corrugated trays quite effective as packaging material while transporting the fruits.

Storage

- Fruits treated with Bavistin @ 100 mg/litre reduces post-harvest losses and extends the shelf life to 25-30 days at room temperature.
- The ideal storage temperature for sweet orange is 6-8^o C at 85-90% relative humidity.

Litchi:

Maturity Indices

The litchi fruits must be harvested at appropriate maturity time for sending to distant and local markets. Litchi is a non-climacteric fruit and therefore it does not ripen after harvesting. The fruits harvested at immature stage do not ripen properly and develop insipid taste.

- Skin colour is the most reliable indicator for assessing harvest maturity. The fruit is said to be ready for harvesting when the pericarp becomes uniform red and the protuberances have become smoother.
- For local market, the fruits should be harvested at full maturity whereas for distant markets harvesting should be done when fruits start developing rose to pink colour.
- At maturity, the tubercles on litchi fruit become less pointed and the fruits attain maximum size.
- The ideal TSS: acid ratio for harvesting of the litchi fruits is 40 or above.

Harvesting

- The fruits are harvested in bunches along with twigs having leaves. This enhances storage life of the fruits.
- The harvesting time of litchi is during peak summer season therefore, the fruits are picked early in the morning after drying of the dew.
- The harvested fruits are stored in shade to avoid discoloration.
- Harvesting during the rains is avoided as the wet fruits are damaged early.

Grading

The quality of litchi for export should be:

- Fruit sound, fresh in appearance, clean, free from any visible foreign matter, free from pests and damage and abrasion.
- Should have minimum equatorial diameter of 23 mm.

Packaging

- The litchi bunch must include more than three attached and well-formed fruits. The branch must not exceed 15 cm in length.
- The fruits are packed in wooden boxes, baskets or cardboard boxes for sending to local or distant markets.
- Cardboard boxes are generally used for export of litchi fruits.
- The most commonly used packing size for litchi fruits is 10-20 Kg/ pack. Each bunch inside a box is packed separately.

Storage

- Litchi fruits can be stored at room temperature for 3-4 days, thereafter, the fruits start turning brown.
- The fruits can be stored for 3-5 weeks by packing in perforated polythene bags at 90- 95 % relative humidity.

- Fruits treated with 2.0% sodium hypochlorite can be stored satisfactorily in perforated polythene bags at 0-30^o C for 25 days.
- Controlled atmosphere storage (3-5% O₂ and 3-5% CO₂) reduces skin browning and slows down the losses of ascorbic acid, acidity, and soluble solids. Exposure to oxygen levels below 1.0 % and/or carbon dioxide levels above 15% may induce off-flavors and dull grey appearance of the pulp.

GUAVA

Maturity Indices

- TSS: acid ratio ranging from 26.0-36.0 with specific gravity <1.0 and light green to yellow colour depending upon variety.
- Harvesting should be done through hand picking with staggered harvest as per maturity of fruits.

Grading

The fruits are mostly graded as per the size and colour.

Packaging

- For local markets fruits are packed in baskets/crates, whereas for distant transportation fruit are packed in corrugated fibre boxes with proper cushioning using paddy straw/dried grass/guava leaves/rough paper etc.
- Being a delicate fruit, it requires careful handling during harvesting and transportation with proper ventilation.

Storage

- The shelf life of guava is short, therefore, proper storage for long distant market is required.
- Mature green and partially ripe guavas are stored at 8-10^o C for 2-3 weeks while fully ripe guavas can be stored at 5-8 ^o C for 1 week at 90-95% relative humidity.

POMEGRANATE

Maturity indices

Being a non-climacteric fruit, pomegranate fruits should be harvested after achieving proper maturity.

Maturity Indices	Attributes	
Fruit Colour	Reddish with waxy shining surface	
Shape of crown and	The bud at the anterior end of the fruit gets curved inside and	
fruit	becomes hard and dry at maturity. The fruit shape becomes	
	compact.	
Sound	The fruit gives a metallic sound when tapped.	
Scratch	Properly mature fruits are easily scratched with finger nails	
Maturity Period	The fruits become ready for harvest in 170-180 days after full	
	bloom.	

Aril Colour The arils attain deep intensity of colour (Dark red- Bhagwa)

with high juice recovery

Juice Colour Red colour of juice in Bhagwa

TSS 12-14° Brix Titratable Acidity Below 0.8%

TSS/acid ratio It is one of the most reliable maturity indicators. Mature fruit

have TSS/ acid ratio between 25 to 40

Harvesting and packaging

- Secateurs are used for fruit harvesting at maturity.
- After harvesting, the fruits should be collected in plastic crates and should be pre-cooled to remove the field heat and enhance the shelf life. Then, the fruits are graded and packed in Corrugated Fibre Board boxes.

Grading

The fruits are graded on the basis of their size, external appearance and quality.

Size code	Weight in grams (minimum)	Diameter in mm. (minimum)	Skin Colour and quality
A	400	90	Good attractive bright red colour and no spots on skin
В	350	80	Attractive red colour and spot free
C	300	70	Bright red and spot free
D	250	60	Fully ripe bright red and spot free
E	200	50	Fully ripe bright red and spot free

Packing

The pomegranates fruits are packed in white or red colored CFB boxes having 3-5 plies for domestic markets. The cut pieces of waste of newspaper are used as cushioning material for the fruits.

Storage

Pomegranate fruit can be stored for 2-3 months successfully at a temperature of $5-7^{0}$ C with 90-95% relative humidity. This temperature range needs to be kept throughout the transport and further storage. The temperature should never go below the 5^{0} C, otherwise it will result in chilling injury.

KIWIFRUIT

Maturity Indices

Cultivar

• A maturity index of 6.2% total soluble solids is found satisfactory.

Days from full bloom to harvest (DFFB) for different kiwifruit cultivars are used to predict the optimum picking date.

Days from full bloom to harvest for different kiwifruit cultivars.

DFFB to harvest

Allison	193±4
Abbott	190 ± 4
Bruno	182±4
Monty	192±4
Havward	202 ±4

• Besides this, at optimum maturity the hair present on the fruit skin can be removed very easily, which can also be used to judge the picking maturity.

Harvesting

- It takes at least 4 to 5 years for a kiwifruit vine to start bearing worthwhile crop and about 8 to 10 years are required to reach full commercial production.
- Kiwifruit are readily harvested by snapping off their stalks at an abscission layer which forms at the base of the fruit. Fruit stalks remain on the vine.
- At least two pickings are normally made. The larger fruits are harvested first and the smaller fruits later having had the chance to improve in size and quality.
- The fruits are transported to the market in hard (High firmness) conditions which subsequently loose their firmness in about two weeks at room temperature to become edible.

Grading

- Kiwifruit is graded on the basis of fruit size and weight.
- In the international market, fruit weight of 70 g is minimum whereas, the fruit having 100 g weight are preferred.

Packaging

- Cardboard boxes of 3-5 kg capacity are used for packing of kiwifruit.
- For export, the fruits are wrapped in poly films, packed in trays.
- 33 fruits of uniform size weighing 100 -105 g are accommodated in a tray.

Storage

- Kiwifruit has a long shelf life which can be extended further with timely picking and good storage.
- The fruits can be stored up to 8 weeks in cool and dry place at room temperature.
- The fruits can be stored for 4 to 6 months at a temperature of 0^{0} C and 90% relative humidity.

PERSIMMON

Maturity Indices

- Fruit skin colour changes from green to orange or to yellowish-green or yellow
- TSS should range between 18-19⁰ B.

Harvesting

- Clip the fruit with secateurs from the tree and calyx should remain attached to the fruit.
- The fruit must be harvested carefully to avoid blemishes and bruises, as they reduce the market value of the fruit.
- Fruits must be harvested in two to three pickings, depending upon the fruit size and colour.
- Persimmon can be harvested in the month of August to October depending upon the altitude.

Grade, sizes and packing

• An ideal size of persimmon fruit cultivar Fuyu ranges between 220-250 g and 150 g is minimum marketable size.

Fruit counts:

• Fruit counts range from 12 to 28 pieces of fruit per tray with most fruit packed to a count of 16 to 20 with an average weight of 3.5- 4.6 kg per tray. Larger fruit e.g. counts of 12 when packed into smaller tray will generally produce higher tray weights i.e., 4.6 kg.

Count sizes:

- 4.0 kg tray can accommodate 12, 14, 16, 18, 20, 23, 25, 28 fruits
- Small sized fruits (25 or 28 per tray)
- Medium sized fruits (20 or 23 per tray)
- Large sized fruits (12 to 18 per tray)
- Smaller fruit are packed loose in 10 kg containers.

Storage

- Persimmon is sensitive to chilling at temperatures less than 5°C will shows flesh browning and softening.
- Persimmon fruits can be stored for 2-3 months at 0-2 0 C temperature, with 90-95 % relative humidity.

Chapter-5

OPERATION AND MAINTENANCE OF IRRIGATION & FERTIGATION SYSTEM

Drip irrigation is application of water in small quantity at the rate of mostly less than 4-5 lph as drops to the zone of the plants through a network of plastic pipes fitted with emitters. Drip irrigation in its present form has become compatible with plastics that are durable and easily moulded into a variety and complexity of shapes required for pipe and emitters.

Merits

- 1. Increased water use efficiency
- 2. Better crop yield
- 3. Uniform and better quality of the produce
- 4. Efficient and economic use or fertiliser through fertigation
- 5. Less weed growth
- 6. Minimum damage to the soil structure
- 7. Avoidance of leaf burn due to saline soil
- 8. Usage in undulating areas and slow permeable soil
- 9. Low energy requirement (i.e.) labour saving
- 10. High uniformity suitable for automization

Demerits

- 1. Clogging of drippers
- 2. Chemical precipitation
- 3. Salt accumulation at wetting front

Components and its selection for a typical drip irrigation

a. Water source tank

The capacity of the tank is calculated from the water requirement of the crop, dripper capacity, type of soil etc.

- **b. Pump/Overhead Tank**: It is required to provide sufficient pressure in the system. Centrifugal pumps are generally used for low pressure trickle systems. Overhead tanks can be used for small areas or orchard crops with comparatively lesser water requirements.
- 1. **Filters**: The hazard of blocking or clogging necessitates the use of filters for efficient and trouble free operation of the micro-irrigation system. The different types of filters used in micro-irrigation system are described below.

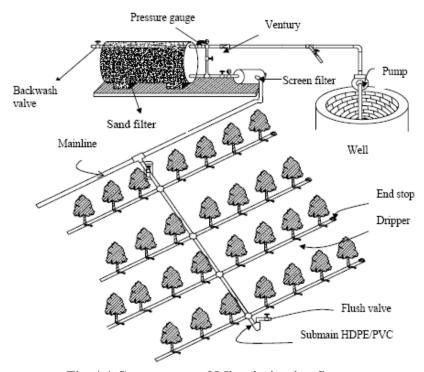


Fig. 1.1 Components of Microirrigation System

a) Gravel or Media Filter:

Media filters (gravel or sand) are necessary for any surface water source. This filter includes a flushing system for washing the gravel or sand and returning the dirt to the water source. Media filters consist of fine gravel or coarse quartz sand, of selected sizes (usually 1.5-4 mm in diameter) free of calcium carbonate placed in a cylindrical tank. These filters are effective in removing light suspended materials, such as algae and other organic materials, fine sand and silt particles. Water is introduced at the top, while a layer of coarse gravel is put near the outlet bottom. Reversing the direction of flow and opening the water drainage valve cleans the filter. Pressure gauges are placed at the inlet and at the outlet ends of the filter to measure the head loss across the filter. Fig. 1.2 shows different types of media filters.

Fig. 1.2 shows different types of media filters.

b) Screen Filters: Screen filters are always installed for final filtration as an additional safeguard against clogging. The screen filter, containing screen strainer, which filters physical impurities and allows only clean water to enter into the micro irrigation system (Fig. 1.3). The screens are usually cylindrical and made of non-corrosive metal or plastic material.

Fig.1.3 Screen filter showing steel wire mesh strainers

c) **Centrifugal Filters**: Centrifugal filters are effective in filtering sand, fine gravel and other high density materials from well or river water. Fig.1.4 shows different types hydro cyclone/centrifugal filters.

Fig.1.4 Hydro cyclone filter

d) **Disk Filters**: Disk filter (Fig. 1.5) contains stacks of grooved, ring shaped disks that capture debris and are very effective in the filtration of organic material and algae. Back flushing can clean disk filters.

Fig.1.5 Disk filter showing stacks of discs

- 4. **Pressure relief valves, regulators or bye pass arrangement**: These valves may be installed at any point where possibility exists for excessively high pressures, either static or surge pressures to occur. A bye pass arrangement is simplest and cost effective means to avoid problems of high pressures instead of using costly pressure relief valves.
- 5. Check valves or non-return valves: These valves are used to prevent unwanted flow reversal. They are used to prevent damaging back flow from the system to avoid return flow of chemicals and fertilizers from the system into the water source itself to avoid contamination of water source.

Distribution Network: It mainly constitutes main line, sub-mains line and laterals ith drippers and other accessories.

- 1. **Mainline:** The mainline transports water within the field and distribute to submains.
- 2. **Sub-mains:** Submains distribute water evenly to a number of lateral lines.
- 3. **Laterals:**Laterals distribute the water uniformly along their length by means of drippers or emitters.
- 4. **Emitters/Drippers:** They function as energy dissipaters, reducing the inlet pressure head (0.5 to 1.5 atmospheres) to zero atmospheres at the outlet. The commonly used drippers are in-line drippers. These are fixed along with the line, i.e., the pipe is cut and dripper is fixed in between the cut ends, such that it makes a continuous row after fixing the dripper.

Water requirements for drip irrigation

- The quality of water for irrigation relates to the parameters required to maintain the crop's health and the integrity of the irrigation system. Every type of pressurized irrigation system requires attention to the water quality to avoid clogging of the irrigation components in order to enable orderly long-term irrigation according to the irrigation program.
- Water quality will dictate filtration requirements, chemical injection requirements, and management of the irrigation systems to prevent dripper clogging.
- Causes of dripper clogging in systems may be chemical (precipitates or scale), physical (grit or particulates such as sand and sediment) or biological (such as algae or bacteria).
- The quality of the water is determined by a wide variety of parameters (measured or calculated) affecting the crop, the soil and the irrigation system. Some of them are listed below:

EC (electrical conductivity)	Alk (alkalinity)	Mn (manganese)
pH (level of acidity or alkalinity)	Cl (chloride)	TSS (total suspended solids)
Ca (calcium - hardness of the water)	SO ₄ (sulfate)	TDS (totally dissolved
		solids)
Mg (magnesium)	PO4 (phosphate)	Turbidity
Na (sodium)	N-NH ₄ (nitrogen-	Algae and Chlorophyll
	ammonium)	
K (potassium)	N-NO ₃ (nitrogen-	BOD (biochemical oxygen
	nitrate)	demand)
HCO ₃ (bicarbonate)	B (boron)	COD (chemical oxygen
		demand)
CO ₃ (carbonate)	Fe (iron)	VSS (volatile suspended
		solids)

FERTIGATION SYSTEM:

Fertigation involves the application of fertilizers with irrigation water at a slow and controlled rate to meet nutritional requirements at different stages of crop growth. Fertilizers are used accurately and efficiently. Under this system, the fertilizers can be applied in splits and thus such applications result in increased crop yields with substantial savings in fertilizer and irrigation water. The application of liquid fertilizers makes the nutrients continuously available to the plants. Water soluble fertilizers should be applied to avoid precipitation, clogging and damage to the components of the system.

1. **Mixing and dissolving the fertilizer:**When applying a liquid fertilizer, it is not necessary to stir it or mix it. Most solid fertilizers, on the other hand, need to be mixed with water to become a liquid fertilizer and if necessary, need to be separated to prevent problems such as precipitation.

- 2. Controlling the amount of fertilizer:It is necessary to control the dosage when applying the fertilizer, the appropriate concentration of fertilizer should be about 0.1% of the irrigation flow. If the irrigation flow is 50 m³ per 1000 m², then the amount of fertilizer you use should be about 50 liters per 1000 m²; excessive use of fertilizer may cause the crops to die and lead to environmental pollution.
- 3. The fertigation process can be broken down into three stages: In the first stage, the soil is moisturized with unfertilized water; in the second stage, a liquid fertilizer is added to the irrigation flow and irrigation begins; in the third stage, the irrigation system is cleaned with unfertilized water.

4. STANDARD PROCEDURE FOR ASSESSING PERFORMANCE

- 1. Check installation according to approved design layout
- 2. Start the pump
- 3. Flush the filters
- 4. Allow the drip system to be loaded with water for 10 min.
- 5. Note the pressure from the pressure gauge at the inlet and outlet of sand and screen filters
- 6. Record the dripper discharge as per the format
- 7. The discharge and pressure readings have to be taken in the below mentioned locations
 - a. First, Middle and Last Dripper of a lateral
 - b. For laterals at beginning, 1/4, 1/2, 3/4 and end of sub main
 - 8. Laterals on anyone side of the sub main can be selected in case of plain land or alternative laterals on either side in case of slight slope in the direction along the lateral
 - 9. Measure the pressure at start and end of laterals
 - 10. If the Emission Uniformity is less than 85 % then the issue has to be taken up with the Drip Irrigation System Designer
 - 11. Modifications have to be taken accordingly.

MAINTENANCE OF DRIP IRRIGATION SYSTEM

The maintenance of drip irrigation system is very essential for its successful functioning.

Sand filter:Backwash the sand filter to remove the silt and other dirt accumulated. Backwash allows the water to come out through the lid instead of backwash valve. Stir the sand in the filter bed upto filter candle without damaging them. Whatever dirt is accumulated deep inside the sand bed, will get free and goes out with the water through the lid. Backflush sand filter every day before starting the system and possibly before stopping irrigation

Screen filter: Open the flushing valve on the filter lid so that the dirt and silt will be flushed out. Open the filter and take out the filter element. Clean it in flowing water. Take out the rubber seals and clean them from both sides. Care should be taken while replacing the rubber seals, otherwise they might get out.

- a. Clean screen tilter everyday
- b. Open the drain valve to remove impurities before cleaning

- c. Use thin water jet / nylon brush to clean the filter element
- d. Do not use stones to rub the screen surface
- e. Check for any mechanical damage
- f. Never use the system without filter element inside filter

Daily Maintenance:

- a. Clean the sand and screen filters for 5 minutes before starting the system
- b. Ensure all drippers are working properly without any leakage
- c. Before stopping irrigation, backwash the sand filter for about 5 minutes

Weekly Maintenance:

- a. Clean the sand filter by hand
- b. Flush the sub main by opening the flush valve for 5 minutes
- c. Flush laterals 5 numbers at a time for 5 minutes

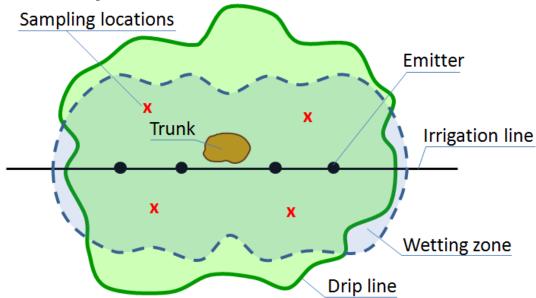
Monthly maintenance:

Chemical treatment: Clogging or plugging of drippers may be due to precipitation and accumulation of certain dissolved salts like carbonates, bicarbonates, iron, calcium and manganese salts. The clogging is also due to the presence of microorganisms and the related iron and sulphur slimes due to algae and bacteria. The clogging is usually avoided/cleared by chemical treatment of water. Chemical treatments commonly used in drip irrigation systems include addition of chloride and/or acid to the water supply.

Acid treatment: Hydrochloric Acid (HCl) is injected into drip systems. The acid treatment is performed till a pH of 4 is observed and the system is shut down for 24 hours. Next day the system is flushed by opening the flush valve and lateral ends.

Chlorine treatment: Chlorine treatment in the form of bleaching powder is performed to inhibit the growth of organisms like algae, bacteria. The bleaching powder is dissolved in water and this solution is injected into the system for about 30 minutes. Then the system is shut off for 24 hours. After 24 hours the lateral ends and flush valves are opened to flush out the water with impurities. Bleaching powder can directly added into the water source at a rate of 2 mg/litre or through venturi assembly.

Sampling in orchards


Time of sampling

- Soil samples to determine the availability of potassium, phosphorus, micronutrients and salt content can be taken any time of the year.
- Taking soil samples every year is usually adequate in high density plantation. In recently
 planted orchards, annual sampling may be done until the soil fertility program is
 established.
- To monitor available nutrients over the years, samples should always be taken during the same season.
- For soil nitrate analyses, samples should be taken in spring/early summer before the period of high nitrogen uptake by the trees.

• Samples need to be taken before fertilizer is applied.

Sampling procedure

- Divide each field into blocks based on soil survey data, slope, cropping history, variety, rootstock, age, growth pattern, or irrigation system.
- Plant residue from the sample spot is removed.
- Samples are best taken with a soil probe or auger.
- The sample is taken halfway between the trunk and the drip line and within the wetting zone of the sprinkler/emitter (Figure 1).
- Cores are taken from the entire area of the field or management area in a W-shaped sampling pattern or by walking a zigzag course around or through the area as shown in Figure 1 for the Brentwood soil.
- Mix the cores thoroughly; remove large stones, pieces or roots and other foreign material.
- Sample by foot increments to a depth of 2 feet. When diagnosing a problem, deeper cores may be recommended.
- To obtain an accurate estimate of the nutrient availability, between 15 and 20 cores should be taken from each block for a composite sample.
- One sample per tree is generally taken. Within each block, make sure to sample different orientations relative to the trunk.
- Collect the samples in a clean plastic bucket. Galvanized or rubber buckets may contaminate samples with zinc.

Figure 1: Bird's view of the optimal sampling location under orchard trees. Soil samples are taken within the wetting zone halfway between the trunk and the drip line.

Sample handling

- When all the cores for an area are taken, mix them thoroughly.
- Very wet samples should be air-dried before packaging. Do not dry the samples in an oven or at abnormally high temperature .
- Put about 500 grams of soil in a clean bag and label it clearly. Follow the instructions of the laboratory that will do the analysis.
- To receive accurate fertilizer recommendations, the sample information sheet needs to be filled out carefully. Include the information sheet within the package submitted to the test lab.

Leaf Tissue Analysis

Analyzing leaf tissue is one of the most valuable and standardized tools to diagnose nutrients and/or monitor the nutritional status of any orchard. To effectively evaluate leaf tissue nutritional analyses, it is important to understand what it can and cannot tell us, and how to interpret results.

Generalized symptoms of nutrient deficiency and excess in fruit crops

Element/status	Visual symptoms	
Nitrogen (N)	Light green leaf and plant colour with the older leaves turning	
Deficiency	yellow, leaves that will eventually turn brown and die. Plant	
	growth is slow, plants will be stunted, and will mature early.	
Excess	Plants will be dark green in colour and new growth will be	
	succulent; susceptible, if subjected to disease and insect	
	infestation; and subjected to drought stress, plants will easily	
	lodge. Blossom abortion and lack of fruit set will occur.	
Ammonium	Plants fertilized with ammonium-nitrogen (NH4-N) may exhibit	
toxicity	ammonium toxicity symptoms, with carbohydrate depletion and	
	reduced plant growth. Lesions may occur on plant stems, there	
	may be a downward cupping of the leaves, and a decay of the	
	plants under moisture stress. Blossom-end rot of fruit and Mg	
	deficiency symptoms may also occur.	
Phosphorus (P)	Plant growth will be slow and stunted, and the older leaves will	
Deficiency	have a purple coloration, particularly on the underside.	
Excess	Phosphorus excess will not have a direct effect on the plant, but	
	may show visual deficiencies of Zn, Fe and Mn. High P may also	
	interfere with the normal Ca nutrition, with typical Ca deficiency	
	symptoms occurring.	
Potassium (K)	On the older leaves, the edges will look burned, a symptom known	
Deficiency	as scorch. Plants will easily lodge and be sensitive to disease	
	infestation. Fruit and seed production will be impaired and of poor	
	quality.	

Excess	Plants will exhibit typical Mg, and possibly Ca deficiency	
	symptoms due to a cation imbalance.	
Calcium (Ca)	The growing tips of roots and leaves will turn brown and die. The	
Deficiency	edges of the leaves will look ragged as the edges of emerging	
	leaves stick together. Fruit quality will be affected with the	
	occurrence of blossom-end rot on fruits.	
Excess	Plants may exhibit typical Mg deficiency symptoms, and when in	
	high excess, K deficiency may also occur.	
Magnesium (Mg)	Older leaves will be yellow in colour with interveinal chlorosis	
Deficiency	(yellowing between the veins) symptoms. Plant growth will be	
	slow and some plants may be easily infested by disease.	
Excess	Results in a cation imbalance showing signs of either a Ca or K	
	deficiency.	
Sulfur (S)	A general overall light green colour of the entire plant with the	
Deficiency	older leaves being light green to yellow in colour as the deficiency	
	intensifies.	
Excess	Leaf tips and margins will turn brown and die.	
Copper (Cu)	Plant growth will be slow and plants stunted with distortion of the	
Deficiency	young leaves and death of the growing point.	
Excess	A Fe deficiency may be induced with very slow growth. Roots	
	may be stunted.	
Iron (Fe)	Interveinal chlorosis will occur on the emerging and young leaves	
Deficiency	with eventual bleaching of the new growth. When severe, the	
	entire plant may be light green in colour.	
Excess	Bronzing and tiny brown spots on the leaves.	
Manganese (Mn)	Interveinal chlorosis of young leaves while the leaves and plants	
Deficiency	remain generally green in colour. When severe, the plants will be	
	stunted.	
Excess	Older leaves will show brown spots surrounded by a chlorotic zone	
	and circle.	
Molybdenum (Mo)	Symptoms will frequently appear similar to N deficiency. Older	
Deficiency	and middle leaves become chlorotic first, and in some instances,	
	leaf margins are rolled and growth and flower formation are	
	restricted.	
Excess	Not of common occurrence.	
Zinc (Zn)	Upper leaves will show interveinal chlorosis with an eventual	
Deficiency	whiting of the affected leaves. Leaves may be small and distorted	
	with a rosette form.	
Excess	Fe deficiency will develop.	

Leaf sampling technique

Various techniques like visual symptom logy, leaf analysis, soil testing etc. are being used to determine the nutritional requirements of fruit trees in different fruit growing zones.

It is very difficult even today to calculate the requirement of fertilizers/micronutrients in different fruits at different ages and productivity levels.

Leaf analysis has several advantages over other methods:

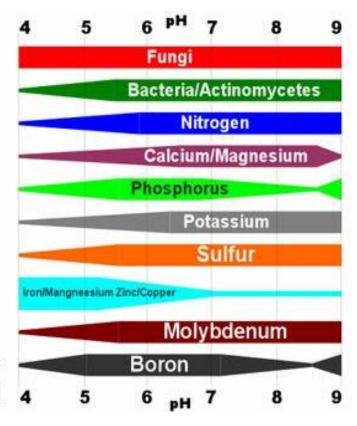
- 1. The leaf analysis gives an exact picture of the nutrient content at given time, from which a relationship with production can be drawn.
- 2. All the essential nutrients act in definite equilibrium in a fruit. Individual nutrient's presence or deficiency may not be related to the total quantity of that particular nutrient in the fruit tree.
- 3. Leaf analysis help in understanding the internal functions of nutrients in a given fruit crop.
- 4. It confirms the deficiency detected by visual symptoms.
- 5. One can distinguish nutrients which have similar deficiency symptoms. Leaf analysis helps in ascertaining that applied nutrient have entered in the plant system or not. It helps in the determination of toxicity of some nutrients.

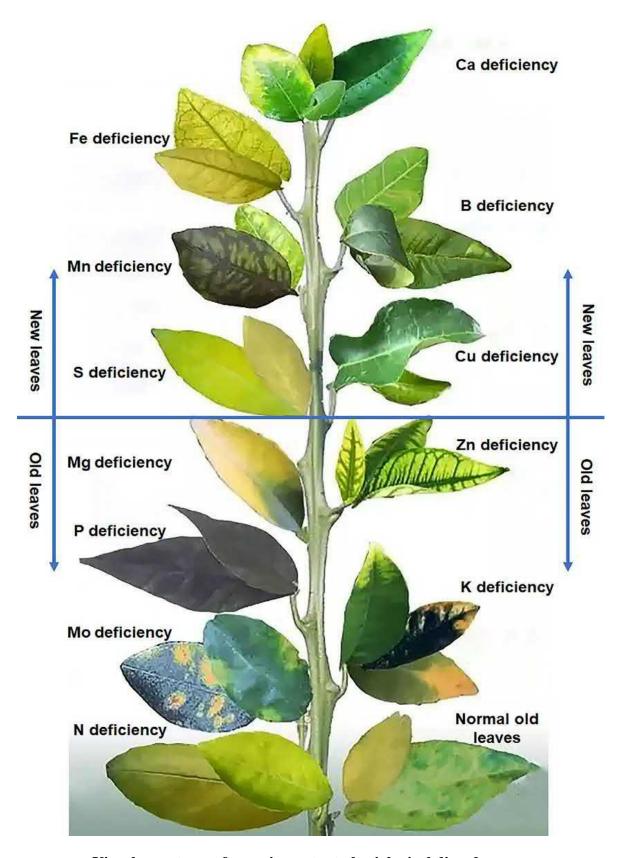
Collection of Leaf Samples:

Leaf tissue sampling has been identified as the most validated indicator of tree fruit nutrient status and cost effective, having the best compromise between sensitivity and stability for most mineral elements. The most stable nutrient concentration has been determined to be on recently mature leaves from nonbearing spurs or new shoots, obtained between the end of active shoot growth and nutrient relocation to shoots and roots.

Make sure to collect enough samples that represent the area that you want to analyze. The general recommendation is 50 leaves in a maximum of two hectares if the block is fairly homogeneous. Do not mix different species, cultivars, young and old blocks. Do not sample from too old or too young leaves, too vigorous or weak shoots, or dirty tissue that show things like insect or bird droppings. Samples should be collected at least 15 days after a foliar nutrient spray, or take into account the latest spray application when interpreting the results. In addition, some pesticides or protectants might contain mineral elements such as Zn, Cu, S, Ca and/or B. If it is not possible to avoid recently sprayed leaves make sure the laboratory knows about the condition, so they pay extra attention in processing the sample and keep it in mind when interpreting the results.

Samples should be collected in paper bags to avoid condensation. Keep cool before sending to the laboratory. Label each sample properly according to the laboratory requirements and submit within 24 hours of sampling.


The accuracy of leaf analysis depends upon the leaf age, its position and time of sampling. Some specific guide lines for individual fruits have been worked out for different fruits.


S. No.	Crop	Plant part, age, stage	Sample Size (Number of Leaves)
1	Mango	 Collect 4-5 month-old leaf from current season's growth from middle part of the shoot. Collect leaves from the middle of the last flow of vegetation branches with flowers at the end. Sample 4 leaves per tree, 20 plants per field. 	50
2	Citrus	 Basal leaf 6-month-old leaf from current season's growth emerged in March Collect the third leaf from the fruit, produced in the spring (aged 6 months), in branches with fruits (2–4-cm diameter). Sample 4 leaves per plant (25 plants per field). 	50
3	Guava	 Third pair of leaf from age in August- December. Collect the third pair of leaves with the petiole, from the end of the branch, 1.5 m from the ground. Sample 4 pairs of leaves per tree, in 25 plants per plot. 	50
4	Litchi	Second pair of leaflets from tip fromautumn flush 6-month-old	100
5	Pomegranate	8-leaf pair of leaf (from the growing tip) from new growth in February	100
6	Plum	Mature leaves from mid-shoot of current growth	50
7	Kiwifruit	10 th to 14 th week after flowering for N, P, K, Cu as well as Fe and 14 th to 18 th week after flowering for Ca, Mg, Zn and Mn.	50
8	Persimmon	Mature leaves from mid-shoot of current growth. The standard leaf sampling period is February/March.	50
9	Pecan nut	Collect at least 100 middle pairs of leaflets from the middle leaf of the current growth.	100

Nutrient
availability and
microbial activity
as affected by
soil pH; the wider
the band, the
greater the
availability or
activity.

(Adapted from Brady, N., The Nature and Properties of Soils, 10th ed. Macmillan Publ. Co., New York, 1990)

The greatest amount of nutrient mix is at 6.4 pH

Visual symptoms of some important physiological disorders

WATER AND NUTRIENT MANAGEMENT

In high density plantations, orchard needs to be equipped with a drip irrigation system. By using a drip irrigation system, we can irrigate the trees as per requirement. This saves 50% of water and 30% savings in fertilizers. It saves electricity, labor and reduces the impact of weeds. Irrigation is required in varied amount at different stages of plant growth. High density fruit trees need to be irrigated as per irrigation scheduling procedure to thrive well and bear fruits every year. The need for water varies according to the type of soil, climate, age of the tree, and growth stage of the tree. Therefore proper water management is needed.

- Therefore, it is better to irrigate by drip irrigation method when required and as much as needed. When water is given by the drip irrigation method, moisture remains in the soil for a long time. So the plant grows well.
- When water is given by drip irrigation system, water particles move vertically than horizontally; hence root zone of plants remained moist always, or the root zone part of the soil is always at field capacity, which is necessary for the growth of plants.
- A drip irrigation system provides controlled watering as per the requirement of the plant; This saves 50% of water and electricity, and labor.
- Applying fertilizer through drip irrigation through fertigation tank/venturi saves up to 30% of fertilizer quantity.

Nutrient Management

Nutritional disorders generally cause a reduction in yield, fruit quality, or both before visible symptoms develop. An effective fertility management program involves preparing the site before planting (as previously discussed) and monitoring the nutritional status of the orchard throughout its life to detect nutrient deficiencies, toxicities, and imbalances before they become yield- or quality-limiting. It should include all of the following:

- 1. Do routine sampling on orchards to detect trends in the nutrient content of the trees.
- 2. Troubleshoot Sample suspected problem areas separate from routine areas to help confirm or deny nutritional disorders. Collect separate samples from affected trees and unaffected trees of the same age, variety, and rootstock for comparison.
- 3. Keep good records on yield and quality. Be sure to include information on the amount and analysis of fertilizer applications.
- 4. Observeleafcolor and the amount of vegetative growth may be indicators of potential problems. If you observe differences, be sure to mark problem trees to enable you to find them when you come back to take leaf samples.

High density fruit trees need to be fertilized round the year to thrive and bear fruits every year. Depending upon the age of the crop, organic manure (FYM) and chemical fertilizers should be applied. Therefore proper nutrition management is needed. While planting, a basal dose is given when the pits are open.

Fertigation: Fertigation is a suitable method of fertilizing high density orchards. This saves water, labor, and fertilizers and makes it possible to increase production through effective and efficient use. The application of fertilizers at different stages of crop growth increases the yield. Fertigation with water-soluble fertilizers has a good effect in different stages of the plant. Fertilizers do not degrade, waste, or evaporate when applied by the fertigation mechanism.

A. Procedure to calculate the amount of the pure element. Example: Nitrogen

- Quantity of pure nitrogen per month: 50 kg per hectare.
- Total days in the month: 30 days.
- Quantity of pure nitrogen per day: 50/30 = 1.66 Kg/ha/day

B. Procedure to calculate how many liters of liquid fertilizer will be needed

- For 100 liters of final mixture (water and fertilizer) 20 Kg of urea or ammonium nitrate equivalent, 27.8 Kg are dissolved.
- That amount of urea or ammonium nitrate represents 9 Kg of pure nitrogen (20 Kg x45%, or 27.8 x33%).
- If in 100 liters of liquid fertilizer there are 9 Kg of pure nitrogen, it follows that 1 (one) kg of pure nitrogen equals 11.1 liters of the mixture (100/9 = 11.1).
- Size of the plot to be irrigated: 20 hectares.
- Total injected liquid fertilizer every day will be:
- Total hectares x kg of pure nitrogen in irrigation x liters of fertilizer per kg of pure nitrogen = 20 ha x1.66 kg N per irrigation x 11.1 liters = 368 liters of fertilizer per irrigation.

C. Required duration of irrigation

- Daily evaporation rate as Class "A" is 8 mm.
- Replacement coefficient (Kc) = 0.8
- Amount of water to irrigate per day = $8 \text{ mm x } 0.8 = 6.4 \text{ mm or } 64 \text{ m}^3 \text{per hectare.}$

- Run time per day = Total water to irrigate in mm / irrigation Hourly capacity in mm / hour = 6.4 mm / 1.0 mm per hour = 6 hours 24 minutes.
- However, as it is irrigated every other day, irrigate duration should be set for 12 hours and 48 minutes.

D. Required injection time

- In this example, the fertilizer injector is capable of injecting 100 liters per hour.
- Total fertilizer to be injected is 368 liters (step B).
- Time to be injected: 368 liters fertilizer / 100 liters per hour = 3.68 hours (3 hours and 40 minutes).

Chapter-6

Insect-pest management

Insect-Pests of Mango

Mango Hopper

Symptoms and Nature of Damage:

During flowering, the hoppers develop enormously in number, suck juice from the inflorescence and other tender plant parts reducing the vigour of the plant leading to reduction in fruit set and even premature fruit fall.

The infestation also leads to development of sooty mould on the honeydew excreted by the insects.

MANAGEMENT

- Keeping orchard clean.
- Avoiding overcrowding and water logging.
- Proper pruning of the tree after harvesting to facilitate proper sunlight and air that minimises hopper population.

Spray schedule is recommended as follows

- At flower bud initiation, imidacloprid (0.25 ml/l 0r metasystox (1ml/l or Cyantraniliprole @ 0.2ml/l or Acetamiprid @ 0.5ml/l At emergence of inflorescence stalks and before flower opening (anthesis), thiamethoxam @ 1ml/l or Chlorantraniliprole @ 0.25 ml/l
- During anthesis and pollination, insecticides should not be sprayed. In case of very high population of hoppers at this stage, imidacloprid @ 0.25ml/l is recommended
- When fruits are of pea size, spray Adding sulphur 3.5g/l to the insecticide based on need to check mites and sooty mould, *Capnodiummangiferum*
- Directing the spray first to stem/ trunk, then branches, twigs, leaves and finally inforescence is a recommended method.

Mango fruit fly Bactrocera dorsalis (Tephritidae :Diptera)

Host:

• It is one of the major pests of mango in India. It also infests guava, peach, citrus, ber, banana, papaya etc.

Symptoms & Damage:

- Semi ripe fruits with decayed spots.
- Dropping of fruits. Damage to semi ripe fruits is caused by both maggot and the adult.
- The oviposition punctures made by the female serves as entry for fermenting organisms.
- Maggots feed on the pulp and convert the pulp into bad smelling discoloured semi liquid mass, unfit for use.
- The fruits develop brown rotten patches on them and fall to the ground eventually.

- Collection and destruction of fallen, rotten fruits.
- Raking under the trees to expose the pupae.
- Mixing of carbaryl 10D in soils @ 50-100 g/tree.
- Install pheromone traps.
- Foliar spray with spinosad (0.2ml/l + gur (20g/l) a month before harvesting the fruit crop repeated after 15 days.
- Post-Harvest Control (Heat treatment techniques):
- Hot water treatment: Submerging fruits in hot water at 43 to 46.7°C for 35- 90 min.

- Double dip method: Immersion of mango fruits in water at 40°C for 20 minutes, followed by 10 minutes at 46°C to get 100 per cent mortality of *Bactrocera dorsalis* eggs.
- Spray Spinosad @ 0.2ml/l or Chlorantraniliprole @ 0.25ml/l before ripening (walnut stage) and 15 days after first spray.

MANGO MEALYBUG Drosichamangiferae (Pseudococcidae: Hemiptera)

Host:

• It is one of the major pests of mango in India. It also infests guava, banana, papaya etc.

Symptoms & Damage:

• Both nymph and adults suck sap from other tender plant parts thus reducing the plant vigour.

Management:

- Deep summer ploughing up to base of the tree trunks, after harvesting to expose eggs of mealy bugs.
- Dusting methyl chlorpyriphos 5D or Malathion 5D around tree and incorporating in to the soil.

- Spraying with acetamiprid (0.5ml/l or imidachloprid (0.25 ml/l or Cyantraniliprole (0.025ml/l), when severe mealybug infestation noticed on the twigs.
- Wrapping 25 cm wide, 400 gauge polythene sheets on the tree trunk 30 cm above ground level and pasting grease over it to prevent migration of freshly hatched first instar nymphs during winter (Nov-Dec) from soil to trees, one week before their emergence.
- Crawlers collecting beneath the polythene sheet may be scraped with a knife.

MANGO SHOOT BORER*Chlumetia transversa* (Noctuidae:Lepidoptera)

Host: Mango

Symptoms & Damage

• Damage results in withering and drying of new terminal shoots.

Management

- Clipping off and destruction of affected shoots.
- Foliar spray with Spinosad @ 0.2ml/lorflubendimide (0.05 ml/l%) or Chlorantraniliprole @.005 ml/l or Cypermethrin @ 1ml/l at the time 0f new flush.

MANGO STEM BORER *Batocerarufomaculata*Cerambycidae: Coleoptera

Host: It is a polyphagous pest, infesting mango, apple, fig, mulberry, Eucalyptus, jack fruit, papaya *etc*.

Symptoms of Damage:

- Masses of frass and sap exuding from the bore holes.
- Leaves of damaged branches dry and fall.
- Branches collapse, tree succumbs in severe cases.

- The affected portions with grubs and pupae should be removed and destroyed, if branches are affected
- The bore holes are traced and opened. A swab of cotton wool soaked in chloroform or petrol 5ml or methyl parathion @ 4ml/l or kerosene oil or Lambda cyhalothrin @ 4ml/l inserted in to the hole and sealed with mud.
- Methyl parathion 1 ml/l poured in to the hole or tablet of aluminium phosphide inserted into the hole to kill the grub.
- When burrows are superficial, extract the grubs with stiff hooked wire and paint bordeaux paste.

Mango Shoot Gall Psylla, *Apsyllacistellata*Buckton Hemiptera: Psyllidae

Host: Mango

Symptoms & Damage

- Feeding of nymphs and subsequenty secretion of certain chemicals through the saliva results in the formation of conical galls in place of apical and axillary buds.
- The gall formation is caused by this pest only after tree start flowering and fruiting.
- Absence of gall formation of twigs with no eggs.

Management:

- **Cultural control**: Practice of removal of eggs bearing leaves from a shoot during March last week which decreases number of shoot gall formation.
- **Mechanical control:** Pruning of shoots upto 30 cm which bears galls during September to check further spread of incidence.
- **Chemical control:** Spray imidacloprid @ 0.5ml /l which is having ovicidal action during second week of March.
- Spray with metasystox (0.5ml/l or Chlorantraniliprole @.0.3 ml/l during middle of August. If needed repeat the spray with same chemical.

Pomegranate butterfly/Anar butterfly *Deudorixisocrates*(Lycaenidae: Lepidoptera)

Host:

• It is the most important and destructive pest of pomegranate and distributed throughout the country, also infesting guava, annona,

apple, ber, citrus, litchi, tamarind, wood apple, soap nut, etc.

Symptoms & Damage:

- Offensive smell and excreta of caterpillar at the entry hole.
- The affected fruits ultimately falling down.
- The fruit appears healthy but the caterpillar inside feeds on pulp and seeds just below the rind. It is only when the grown up caterpillar comes out, a round hole is seen through which juices come out.
- Feeding injury also causes rotting of the fruits. Up to 50% fruit damage is observed.

Management:

- Destruction of fallen infested fruits checks the spread.
- Removal of flowering weeds especially of Compositae family.
- Though expensive, bagging of fruits with polythene or paper bags or cloth bags soon after the fruit set prevents the pest attack.
- Initiate the spray schedule with the onset of flowering with any of following insecticides:
- cypermethrin @1ml/l or spinosad @ 0.2ml/l flubendimide (0.25ml/l or Lambda-cyhalothrin @ 0.25ml/l
- Repeat the spray at 15-20 day interval.
- About 3 to 4 sprays are needed for effective control of the pest, as it continues to attack flowers (flowering in pomegranate remains for a longer time).

Citrus Butterfly: Papiliodemoleus, Papiliopolytes, Papiliohelenus

(Papilionidae: Lepidoptera)

Host:

- It infests almost all citrus varieties though Malta (Citrus sinensis) is its preferred host.
- It can feed and breed on all varieties of cultivated or wild citrus and various other species of family Rutaceae. Besides citrus, it also attacks ber, wood apple, curry leaf.
- *P.demoleus* is a big beautiful butterfly with yellow and black markings on all the four wings, having wing expanse of about 50-60 mm. Its hind wings have a brick red oval patch near the anal margin and there is no tail like extension behind though common in Papilionidae.
- *P. polytes* males are black and females vary in form.
- *P. helenus* has black wings with three white distal spots.
- Symptoms and Damage:

Leaves fed up to midribs.

- In small orchards and nurseries with mild infestation, hand picking and destruction of various stages of the pest.
- Natural enemies enumerated below suppress the pest population
- Egg parasitoids: *Trichogrammaevanescens*; *Telenomussp.*
- Larval parasitoid: *Distatrixpapilionis; Brachymeriasp.*
- Pupal parasitoid: *Pterolus*sp.
- Spraying of spinosad @ 0.2ml/l or cypermethrin (1ml/l When the caterpillars are small. *B. t.* formulation HALT at 9 g/l is also recommended.

Citrus leaf miner *Phyllocnistiscitrella* (Gracillariidae: Lepidoptera)

Host:

• It attacks all species of citrus but prefers sweet oranges. It also infests Ponagamia, jasmine etc.

Symptoms & Damage:

- Characteristic silvery white zigzag galleries below the epidermis of tender leaves.
- Serious infestation causes retardation in growth. The infestation predisposes the leaves to canker growth.

- Pruning of affected parts during winter and burning of them
- Spraying of Neem cake solution 5% or Neem oil 5% or imidacloprid (0.25ml/l or Cyantraniliprole (0.3 ml/l or chlorantraniliprole (0.3ml/l, twice at 10 days interval at every new flush time i.e. during June July, Sep Oct, Dec Jan.
- Drenching of tree basins with imidacloprid @ 0.25/l

Citrus psylla *Diaphorinacitri* (Psyllidae: Hemiptera)

Host: Citrus

Symptoms & Damage

- The damage is caused by the nymphs which crowd on the terminal shoots and buds and suck up the juice which results in Curling and cupping of leaves.
- Defoliation and death of young shoot in severe infestation and
- The fruits turning undersized and juice content reduced.

• Spraying of methyl demeton (1ml/l or cypermethrin (1ml/l) or imidacloprid (0.25ml/l seedling stage on fresh foliage, twice at 10 days interval.

INSECT-PESTS OF LITCHI

Litchi fruit borer Conopomorphasinensis Bradley (Gracillariidae : Lepidoptera)

Host: Also known as the litchi stem-end borer in China and the lychee fruit borer in Thailand is the major pest in most seasons.

Symptoms & Damage:

- Litchi fruit and shoot borer causes losses to fruit and shoot, to the tune of 24-48% and 7-70% respectively.
- The insect damage the newly emerged shoot during the Sept-Oct resulting in failure of shoot to bloom.
- Female moth laid eggs on shoots, flowers buds, calyx and newly emerged caterpillar
 enter inside the fruit through peduncle and in shoots through bcortex region of the new
 shoot.

Management:

- Bearing trees should be inspected during early flush development and sprayed if necessary. The leaf flush before flower initiation is very important as it supplies the carbohydrates needed for fruit development. If 30 to 40 percent of the larvae are parasitised, spraying is not recommended. Young, non-bearing trees do not need to be sprayed either. This also allows the parasitoids to build up in the orchard.
- Spray with spinosad (0.2ml/lor cypermethrin (1ml/lorflubendimide (0.25ml/l or Lambda-cyhalothrin(0.3ml/l at pre bloom stage.
- Repeat the spray at an interval of 15 days with any of the abovementioned pesticides.

• 3-4 sprays are needed for proper management of the pest

Erinose mite Acerialitchii (Keiffer) Acari : Eriophyidae

Host:Litchi

Symptoms & Damage:

- The mites attack new leaves causing a felt-like erineum to be produced on the undersurface.
- This forms as small blisters but may eventually covers the entire leaf, causing it to curl.
- In severe cases, whole terminals may be deformed.
- The young erineum is silver-white, changing to light brown and dark reddish-brown, and eventually black.
- The greatest numbers of mites are found in the intermediate stages.
- Many leaves are ruined if infestations are severe. This generally causes no problems in established trees, but can debilitate young orchards. There can also be a problem if the mite moves from leaves onto the developing flowers and fruit. Fruit set can be disrupted or the fruit deformed. Such fruit are unmarketable.

Management:

- Numerous species of predatory mites, particularly those from the Phytoseidae, have been recorded with *A. litchii*.
- Branches infested with the mite should be cut off and burnt.
- The mites can be controlled by applying insecticides when they move from the older leaves to a new flush. The leaves should be checked regularly for symptoms over summer and autumn.
- Chemicals recommended include are magister @0.5ml/l or fenzaquin (0.5 ml/l) or propargite (1ml/l fenpyroximate(0.05ml/l) and spiromesifen @ 0.025 ml/l

Preparation of field concentrations of insecticides

The success of spray application for the control of the insect pests depends upon the use of accurate quantities of insecticide solutions per unit area. For field application of insecticides, the solutions are prepared generally from the formulations. The formulations are also the concentrated products of insecticides though contain lower quantities of active ingredients than their respective technical products. These are diluted before use in the field for the control/management of the pest. The applicator must determine the quantity of the formulation to be added into the tank to ascertain the correct recommended dosage. For the purpose, the following formulae are given:

A. FOR EMULSIFIABLE CONCENTRATE (EC) AND WETTABLE POWDER (WP) FORMULATIONS:

Formula:

F = Quantity of formulation required (ml or g)

S = Total volume of spray solution to be made (litres)

C = Concentration (%) of the solution to be prepared

a.i.= Active ingredient (%) in the given formulation

Exercise 1. How much spray fluid of carbaryl 0.1% concentration can be prepared from 125g of Sevin 50WP?

Solution: In the present exercise we are given;

$$F = 125g$$
 $S = ?$
 $C = 0.1\%$

$$a.i. = 50\%$$

Applying the formula :
$$F = \frac{SC}{a.i.} \times 1000$$

 $125 = S \times 0.150$
 $S = \frac{125 \times 50}{0.1 \times 1000} = \frac{6250}{100}$

$$S = 62.5 \text{ litres}$$

Exercise 1. How much spray fluid of carbaryl 0.1% concentration can be prepared from **125g of Sevin 50WP?**

Solution: In the present exercise we are given;

$$S = ?$$

$$ai = 50\%$$

Applying the formula :
$$F = \frac{SC}{a.i.} \times 1000$$

$$125 = S \times 0.150$$

$$S = \frac{125 \times 50}{0.1 \times 1000} = \frac{6250}{100}$$

$$S = 62.5 \text{ litres}$$

Exercise 2. Calculate the quantity of Cythion 50 EC required for preparing 50 litres of 0.1 % spray solution of malathion for the control of fruit flies in mango orchards.

Solution: In the exercise we are given;

$$S = 50$$
 litres

$$C = 0.1\%$$

$$a.i. = 50\%$$

$$F = ?$$

Applying the formula :
$$F = \frac{SC \times 1000}{a.i.}$$

$$F = \frac{50 \times 0.1 \times 1000}{50}$$

$$F = \frac{50 \times 1 \times 1000}{500}$$

$$F=50\times1\times2$$

$$F=100ml$$

Exercise 3. For the control of fruit borer of litchi, 500ml of Cymbush 25 EC is added in 250litres of water. Find out the concentration of cypermethrin the spray solution.

Solution: According to the question we are given;

$$F = 500ml$$

$$S = 250litres$$

$$C = ?$$

$$a.i.= 25\%$$

Applying formula

$$F = \frac{SC}{a.i.} \times 1000$$

$$500 = \frac{250 \times C \times 1000}{25}$$

$$C = \frac{500 \times 25}{1000 \times 250}$$

$$C = \frac{1}{20}$$

$$C = 0.05\%$$

Exercise 4. How much volume of spray solution can be prepared form 250g Sevin 50 WP for spray of carbaryl @0.1% to control the defoliating beetles in apple orchards?

Solution: From the exercise we have;

$$F = 250$$
 $S = ?$
 $C = 0.1\%$
 $a.i.= 50$

Applying formula

$$F = \frac{SC}{a i} \times 1000$$

$$250 = \frac{S \times 0.1 \times 1000}{50}$$

$$S = \frac{250 \times 50 \times 10}{1000}$$

$$S = 125$$
litres

Exercise 5. 500ml of formulation is added in 250 litres of water to prepare a spray solution containing 0.1% a.i. Find out the active ingredient in the formulation.

Solution: From the exercise we have;

$$F = 500ml$$

$$S = 250$$
litres

$$C = 0.1\%$$

$$a.i. = ?$$

Applying formula;
$$F = \frac{SC}{a.i.} \times 1000$$

$$500 = \frac{250 \times 0.1}{\text{a.i.}} \times 1000$$

Active ingredient (a.i.)in the formulation is = 50%

a.i. =
$$\frac{250 \times 100}{500} \times 1000$$

$$=\frac{25000}{500}=50$$

FOR GRANULAR AND DUST FORMULATIONS:

Formula:

$$C_1 V_1 = 100 RA$$

Where

C1 = Concentration (%) of the given formulation

V1 = Amount / Quantity(Kg) of formulation required

R = Recommended rate of application (Kg/ha)

A = Area of be treated (ha)

Exercise 6. Calculate the amount of Furadan 5 G required for application in an 1000m² against the leaf miner of citrus applied @0.25Kg a.i. Carbofuran/ha.

Solution:

In the present exercise we are given;

$$C1 = 5\%$$

$$V1 = ?$$

$$R = 0.25 Kg$$

$$A = 0.1 \text{ ha}$$

Applying
$$C_1V_1 = 100 RA$$

$$5 \times V_1 = 100 \times 0.25 \times 1$$

$$V_1 = \frac{100 \times 25 \times 0.1}{5 \times 100} = 0.5$$

Hence
$$V1 = 0.5$$
kg

Exercise 7. If 5Kg of granular formulation is applied for treating 1 hectare area @ of 0.25kg a.i/ha, find out the per cent active ingredient in the formulation.

• Solution:

In the present we are given;

$$C1 =$$

$$V1 = 5Kg$$

$$R = 0.25 Kg a.i./ha$$

$$A = 1ha$$

Using the formula:

$$C_1 V_1 = 100 \ RA$$

$$C_1 \times 5 = 100 \times 0.25 \times 1$$

$$C_1 = \frac{100 \times 0.25 \times 1}{5 \times 100} = 5.0$$

$$C_1 = 5\%$$

- Exercise 8. 10Kg of chlorpyriphos 5% granules are used to treat 5000 m² area for the management of white grubs in an apple orchard, find out its rate of application.
 - Solution:

In the exercise we are given;

$$C1 = 5.0$$

$$V1 = 10Kg$$

$$R = ?$$

$$A = 0.5ha$$

According to the formula; $C_1V_1 = 100 \text{ RA}$

$$C_1 V_1 = 100 \ RA$$

$$5 \times 10 = 100 \times R \times 0.5$$

$$R = \frac{5 \times 10}{100 \times 0.5} = 1.0$$


$$R = 1.0 \, Kg / ha$$

TYPES OF SPRAYERS:

1. **Knapsack Sprayer:** Knapsack sprayer consists of a pump and a air chamber permanently installed in a 9 to 22.5 liters tank. The handle of the pump extending over the shoulder or under the arm of operator makes it possible to pump with one hand and spray with the other. Uniform pressure can be maintained by keeping the pump in continuous operation.

2. Foot Sprayer: The foot sprayer is one of the ideal and versatile

sprayers used for multipurpose spraying jobs. The sprayer consists of a pump operated by the foot lever, suction hose with strainer, delivery hose, spray lance fitted with shut off pistol valve, gooseneck bend and adjustable nozzles. The pump barrel is mounted on a steel frame, which provide it stability when placed on the ground. It has a provision of two strong springs, which retract the foot lever to its original position after each pumping stroke. The sprayer does not have inbuilt tank, therefore an additional storage device or container is required to store the spray liquid in which the strainer ()f suction hose remain submerged. It has provision for the two discharge lines, which increases its versatility and field capacity. The plunger pump being a positive displacement pump, builds up a high pressure to throw spray liquid to larger distances with a suitable boom. The pump barrel, lance and the spray nozzle are made

from brass alloy. For operation the inlet pipe is placed in the storage container and one person continuously operates the pump by foot lever. There is a provision for the operator to hold the sprayer at the top by V-type fixture. The other person directs the lance to the target. For spraying tall trees up to a height of to m, a high jet or bamboo lance can be used.

3. Power Sprayer: Power sprayers are used for developing high pressure and high discharge for covering large area. These sprayers are either operated by auxiliary engines or electric motors. Most of these sprayers are hydraulic sprayers and consist of power unit to drive the pump, pump

unit which employs piston or plunger pump, piston (I to 3), pressure gauges, pressure regulators, air chamber, suction pipe with strainer, delivery pipes fitted with lance, gooseneck bend and nozzles. The portable sprayers use petrol engine so that these can be easily taken to the spray sites. The complete assembly is mounted on the stretcher type frame or on wheel barrow for easy transportation. The number of lances may vary from I to 6 depending upon the

model. In some models there is a built in storage tank of fibreglass having capacity of 100 litres, while 172 n others a separate storage tank is required in which the suction pipe of the sprayer remains submerged. For operation, the shut off trigger valve of the lance is closed and the engine/electric motor is started to actuate the pump. The pump draws the spray liquid from the tank, imparts pressure energy and sends it to the delivery line/lines. The operator directs the lance towards the target and operates the trigger/shut off valve. Adjusting the nozzle or selecting the appropriate nozzle, adjusts the spray pattern. For delivering the spray liquid to large distances/height a bamboo lance can also be used.

4. Tree Sprayers: The tree sprayer is an ideal sprayer for spraying tall fruit trees in the orchards. It

consists of a 4- stroke petrol/ kerosene engine to drive the fan, a centrifugal fan which produces stream of high volume and velocity, a micronizer nozzle for producing uniform and fine droplets of spray liquid in the range of 150-200 microns, plastic tank for storage of spray liquid, rotary pump to draw the spray liquid from the tank and to feed it to the nozzle and a fibre glass casing. All these components are joined and mounted on the stretcher type of frame. The sprayer can be carried by two persons to the place

of spraying. For operation, the tank is filled with spray liquid and the engine is started by cranking with the rope, to drive the fan and the rotary pump. The control valve is opened to adjust the rate of flow. The sprayer is placed under the tree and manually moved around it to complete the spraying operation.

5. Power Tiller / Tractor Mounted Orchard Sprayer: It consists of an HTP (horizontal triplex piston) pump, trailed type main chassis with transport wheels, chemical tank with hydraulic agitation system, cut off device and boom equipped with turbo nozzles. It is fitted with turbo

nozzles. It generates droplets of 100-150 micron sizes. Depending upon the plant size and their spacing, row the orientation of booms can be adjusted. The spray booms mounted behind the operator. Theseare used to apply pesticides, plant

growth regulators and foliar nutrients to orchard trees. It is a power tiller / tractor mounted equipment suitable for large area land

OPTIMUM DROPLET SIZES FOR DIFFERENT TARGETS:

Target group	Droplet size (microns)
Flying insects (drift)	10-15
Crawling and sucking insect (drift)	30-50
Plant surfaces (limited drift)	60-150
Soil application (no drift) as in case of herbicide	250-50
application	

CALCULATION OF PESTICIDE / FUNGICIDE DOSES:

A. If the concentration is given in % a.i./ litre

Parameters required:

- 1. Spray volume required
- 2. Desired concentration in a.i.%
- 3. Concentration of commercial product in a.i.%

The dose will be calculated by following formula:

For example:

Calculate the quantity of Bavistin 50WP required for a 100 litrespary volume @ 0.05%a.i.

Quantity of Bavistin 50WP required (g) =
$$\frac{0.05 \times 100 \times 1000}{50}$$

$$= 100 g$$

Calculate the quantity of Spinosad 45 SC required for 200 litre spray volume @0.05 % a.i.

Quantity of Spinosad 45 SC required (ml) =
$$\frac{0.05 \times 200 \times 1000}{45}$$

= 222.22 ml

B. If concentration is given in % only

Parameters required:

- 1. Desired Concentration
- 2. Desired volume in litres

The dose will be calculated by following formula:

For example:

Calculate the quantity of carbendazim (Bavistin 50WP) required for a 100 litrespary volume @ 0.05%.

Quantity of Bavistin 50WP required (g) =
$$\frac{0.05 \times 100 \times 1000}{100}$$

$$= 50 g$$

C. When recommendation is in kg a.i. / ha

Parameters required:

- 1. Recommended rate (kg a.i.)
- 2. Area to be sprayed (ha)
- 3. Concentration of commercial product in a.i.%

The dose will be calculated by following formula:

For example:

Calculate the quantity of Bavistin 50WP required for a 2 ha area @ 0.5 kg a.i./ha

Quantity required (kg) =
$$\frac{0.5 \times 2 \times 100}{50}$$
$$= 2 \text{ kg}$$

DO OR DON'TS WHILE HANDLING PESTICIDES

Do:

- Read the pesticide label carefully prior to purchase of pesticide
- Choose the appropriate pesticide keeping in view the target pest / pathogen
- Transport the pesticides safely away from children, groceries and animal feed
- Read the label carefully again before opening the container and follow all precautions mentioned on the package
- Use proper safety equipment and protective clothes as per the label recommendations
- Apply proper dose as advised
- Wear safety goggles, masks and gloves while handling and applying pesticides
- Keep all records of pesticide applications and environmental conditions at the time of application
- Rinse all the tools and equipments at least thrice and throw rinse water as per the label recommendations
- Wash clothing worn at the time of pesticide application separately from other clothes
- Follow instructions marked on the label in case of eye contact or ingestion of pesticide accidently
- Call a doctor immediately in case of accidental exposure
- After usage, store the pesticide securely in original containers tightly closed and labeled
- Dispose the unused or expired pesticides properly

Don't:

- Purchase extra quantity of pesticide
- Handle pesticides when you are not feeling well
- Smoke or eat anything while applying pesticides
- Inhale pesticide dusts, sprays or vapours
- Mix or throw the pesticide near a natural water source
- Use excess quantities of pesticides to avoid environmental degradation
- Use on non target pests
- Allow children or pets to touch the pesticides
- Allow people or pets to enter the pesticide application area
- Dispose the waste or unused product in the drain, sink or toilet
- Reuse pesticide containers as these may be dangerous
- Transfer pesticides to any other containers especially the containers of eatables
- Store pesticides with or near food, animal feed or medical supplies or in the areas where flooding is possible
- Touch any of your body part while spraying pesticide without washing hands properly with soap

Chapter-7

DISEASE DIAGNOSTICS AND MANAGEMENT

1. Mango:

i) Anthracnose:

- Oval or irregular, greyishbrown spots are seen on leaves which may coalesce
- On floral organs, minute, black dots are found in humid weather which are basically acervuli of the

fungus.

The ripened fruits show typical symptoms of anthracnose in the form of black spots on skin of the affected fruits gradually becoming sunken and coalesce

Mango Anthracnose

ii) Powdery Mildew:

- Whitish or grayish powdery growth on inflorescence and tender leaves which is the most common stage of this disease
- On leaves and shoots symptoms of the disease are quite common.
- Severely damaged infected floral parts drop off.
- Number and size of flowers is reduced leading to less yield.
- Fruits become malformed and off coloured and drop at premature stage

Mango Powdery Mildew

iii) Mango Malformation:

- Bunchy top phase
- Floral malformation and
- Vegetative malformation

Floral malformation

Vegetative mango malformation

iv) Die Back and Gummosis / Decline complex:

- Twig Blight
- Die Back
- Gummosis
- Bark Splitting.

Mango Gummosis

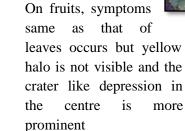
v) Bacterial Blight / Canker / Black Spot:

- Black angular spots are raised and appear on leaf lesion, which develop greasy margins and leaf venation.
 These are surrounded by a chlorotic (yellow) halo.
- Symptoms on fruits begin around lenticels as small irregular water-soaked specks or as small star-shaped lesions.
- With the progress of the disease, lesions blacken, develop greasy raised which later develop cracks.

2. Citrus

i) Anthracnose:

- Symptoms appear on leaves as black sunken spots which causes shedding of leaves and dieback of twigs leading to defoliation which ultimately leads to drying of tips.
- On fruits, light green spots appear turn brown after some time.



Dieback/Citrus Anthracnose

ii) Citrus Canker:

 Yellowish brown to green raised margin and watery yellow halo surround the rough lesions on leaves

 Symptoms on stem are same as on leaves except

that no yellow halo is present, bark eruption takes place, bacterial ooze is seen from cracks during warm rainy season.

iii) Citrus Gummosis:

- Yellowing of leaves, followed by cracking of bark and profuse gumming occur on the surface.
- Rotting of the bark and drying of tree leads to girdling effect.
- There is heavy blossom prior to death, but fruits die prematurely.
- Foot rot or collar-rot occurs

Citrus Gummosis

iv) Root and Collar Rot:

- Water-soaked, dark, usually sunken and greasy spots appear usually at the graft between the scion and rootstock or at soil level.
- Leaves turn yellow, dry and fall, and branches die back as root and collar rots progresses.
- The tree dies if the rot circles the trunk

Root and Collar Rot

v) Sooty Mould:

• Black encrustation covers the leaves which affect the photosynthetic activity.

vi) Citrus Tristeza:

• Pits in the wood can be observed ranging from short and narrow to elongated and deep when the bark is peeled away; sometimes gum is associated with the pits.

• Severely affected trees are chlorotic, stunted, and generally have a low yield of poor quality fruit.

Citrus tristeza

vii) Citrus Greening:

- Leaf chlorosis is the main symptom which resembles the zinc deficiency
- A characteristic feature of greening is that the yellow areas are surrounded on one side by the mid rib and on the other side by lateral veins. The yellowing expands towards the margins
- The size of leaves is also reduced
- The leaves are thicker than normal and usually remain erect

Greening symptoms in sweet orange

Litchi

i) Leaf, Panicle and Fruit Blight

- Symptoms appear as light brown to dark brown necrosis on the tip of the leaf
- Later, the necrosis advances towards both the margins of the leaf and the affected leaves dry up completely
- Blighting of panicles and fruits occurs.
- Panicles shrivel and dry up as a result of necrosis, while necrosis of the pedicel lead to complete drying of the rind of developing fruits.

Litchi leaf blight

Litchi panicle blight

Litchi fruit blight

ii) Twig Blight and Anthracnose:

- Necrosis of leaves on new shoots, foliar blight and tip dieback are major symptoms
- On fruits brown pinhead lesions appear that later turn to circular dark-brown to black sunken lesions on mature fruits

Litchi twig blight

Litchi anthracnose

iii) Fruit Rot:

Symptoms are seen on injured portion of the fruits. The decayed areas get depressed and rot gradually penetrates deep into the pulp. Fruits emit an odour of fermentation

iv) Root Rot and Wilt:

Wilting of branch occurs followed by the decline of new growth on the affected branch in sometime. Tips may die without wilting.

3. Guava

i) Fruit Canker:

- Scabby, minute, brown or rust- coloured lesions of 2 to 4 mm diameter appear on the fruit, which are unbroken and circular and later tear open the epidermis in a circinate manner.
- These scabby lesions later develop raised margins and cankerous spots develop in great numbers.

ii) Styler End Rot:

- Initial symptoms of the disease appear as circular, water soaked lesions at styler end
- Initial symptoms of the disease appear as circular, water soaked lesions at styler end
- Numerous closely aggregated small, white or light grey pycnidia develop on infected area

Styler end rot

iii) Red Rust / Algal spot:

- Spots on leaves may be scattered or crowded, numerous or few and vary from mere specks to big patches
- The fruit lesions are dark green to brown or black in colour and smaller than leaves

4. Pomegranate

i) Bacterial blight:

- On leaves one to several small water soaked, dark coloured irregular spots appear leading to premature defoliation in severe cases.
- Girdling and cracking of nodes occur on the stem following the brown to black spots around the nodes
- Dark brown, irregular slightly raised spots with oily appearance are formed on fruits, which split open with L-shaped cracks under severe cases

ii) Cercospora Leaf and Fruit Spot:

- On leaves and fruits, light zonate brown spots appear.
- These leaf spots are minute, brown in colour with yellow halo.
- Spots are scattered, circular or irregular and become dark brown with age.

Cercospora Leaf and Fruit Spot

iii) Anthracnose:

- Symptoms appear as small regular or irregularly shaped light violet or black leaf spots with yellow halos.
- Both young and mature fruits develop spots which are initially circular, turning irregular with sunken centres, brown to dark brown and cover the fruit partly or completely.

Minute, black dots representing acervuli are clearly visible on the fruits

iv) Fruit spot and rot

• On fruits, small reddish-brown circular spots appear. As the disease progresses, these spots coalesce to form larger patches and the fruits start rotting.

• The arils get affected which become pale brown to black and become unfit for consumption.

Alternaria fruit spot and rot

5. Persimon

- i) Bitter rot / Anthracnose:
 - Spots appear both on leaves and fruits and result in early dropping of leaves and fruits

PREPARATION OF BORDEAUX MIXTURE AND BORDEAUX (PRUNING) PASTE

1. Bordeaux mixture:

i) For the preparation of 1% Bordeaux mixture we need following components:

Copper sulphate1 kg

Lime 1 kg Water 100 litre

ii) For the preparation of 0.8% Bordeaux mixture we need following components:

Copper sulphate 800 g

Lime 800 g Water 100 litre

Copper sulphate

Lime

Steps:

• Dissolve required quantity of copper sulphate and lime each in 20 litre of water separately in two different plastic buckets

- Keep the two solutions dissolved overnight
- Now, take a third plastic or non-metallic container and pour the two solutions together or one by one in the third container.

- Mix these solutions gently with a wooden, plastic or glass stick and pour more water to the solution to make the final volume to 100 litres
- Mix gently and the Bordeaux mixture is ready to use
- Before use, check the solution for phytotoxicity

Phytotoxicity test:

- Dip an iron rod / blade in the solution for 10-20seconds and take it out
- Check whether there is any deposition of rusty layer on the rod or not.

Phytotoxicity test

• If there is deposition of rusty layer on the rod, add more lime to the solution until the rusty layer disappears

Precautions:

- Do not use metallic container for its preparation
- Both the constituents should be first mixed in lesser quantity of water and final volume should be made in the last step
- Always pour copper sulphate solution into lime solution and not the vice versa

2. Bordeaux paste:

It is actually 10 % Bordeaux mixture. The composition is as follows:

Copper sulphate1 kg

Lime 1 kg Water 10 litre

The steps in its preparation are same as in Bordeaux mixture. 1 kg each of copper sulphate and lime are mixed in 5 litres of water separately and finally mixed together to make the consistency of a paste.

3. Bordeaux paint:

- For the preparation of Bordeaux paint, we use monohydrate copper sulphate.
- For this, prior to use, copper sulphate is heated so as to evaporate its water molecules and it gets converted into a white coloured powder.
- Normally we take 2 kg of copper sulphate with 3 kg of lime to make this paint.

- After converting copper sulphate into monohydrate form, the two components are mixed together to get a fine white powder.
- Linseed oil is then added to the mixture so as to get the consistency of a paint.
- This paint can be applied to the tree trunks so as to avoid the attack of pathogens

YEAR ROUND OPERATIONS OF DIFFERENT CROPS

1. Mango

Month	Group	Operations
January	Diseases	 De-blossom the new flower buds or panicles to manage the malformation Spray the infected trees with potassium metabisulphite (KMS) @ 0.06 % (0.6 g/l) or NAA (200ppm) to manage the malformation
February	Diseases	• Three sprays of Wettablesulphur (2g per litre of water) or carbendazim (1g/liter) or hexaconazole (0.5ml/liter) which include first spray as preventive spray is applied when the size of panicle is 8-10 cm. Second spray is done after 10-15 days of first spray and third spray is need based which is done after 10-15 days of second spray.
March	Diseases	 Third spray of Wettablesulphur (2g per litre of water) or carbendazim (1g/liter) or hexaconazole (0.5ml/liter) if required If symptoms of anthracnose are visible, spray the foliage with carbendazim (1g/l) or copper oxychloride (3 g/l)
April	Diseases	 Spray the anthracnose affected foliage and panicles with carbendazim (1g/l) If Alternaria infection is also mixed with anthracnose then spray with carnedazim (1g/l) + mancozeb (2g/l)
May	Diseases	 One or two sprays of thiophenatemethy (1g/l) or carbendazim (1g/l) are effective to fight latent infections, if any To manage bacterial canker, spray the crop with streptocycline (20g/100 litre)
June	Diseases	 To manage bacterial canker, spray the crop with streptocycline (20g/100 litre) After harvest, dip the fruits in ethral solution (700ppm) for 5 minutes for unifrm ripening of fruits. Addition of carbendazim (05g/l) to this solution helps to manage the fruits from post harvest fungal diseases
July	Diseases	• Spray the crop with copper oxychloride (3g/l) to manage from anthracnose and red rust
August	Diseases	• Repeat two sprays at 10-15 days interval with copper oxychloride (3g/l) to manage the crop from anthracnose and red rust
September	Diseases	• If anthracnose or red rust symptoms are visible on leaves, spray the crop with copper oxychloride (3g/l)
October	Diseases	 Spray the infected trees with potassium metabisulphite (KMS) @ 0.06 % (0.6 g/l)or NAA (200ppm) to manage the malformation If symptoms of die back are visible, prune the infected

		 branch and apply Bordeaux paste Spray the crop with copper oxychloride (3g/l) to manage from die back or Phoma blight If gummosis symptoms are visible, then scrap the bark of affected portion and apply Bordeaux paint
November	Diseases	 Repeat two sprays of copper oxychloride (3g/l) at 10-15 days interval to manage from die back or Phoma blight If gummosis symptoms are visible, then scrap the bark of affected portion and apply Bordeaux paint
December	Diseases	• De-blossom the new flower buds or panicles to manage the malformation

2. Citrus

Month	Group	Operations
January	Diseases	 Spray of Bordeaux mixture (1%) or copper oxychloride (3g/l) for the management of foot rot / gummosis Spray with streptocycline 10g/100litre) to manage citrus canker
February	Diseases	 Spray of Bordeaux mixture (1%) or copper oxychloride (3g/l) for the management of foot rot / gummosis and antharcnose Spray with streptocycline 10g/100litre) to manage citrus canker
March	Diseases	 Spray of Bordeaux mixture (1%) or copper oxychloride (3g/l) for the management of foot rot / gummosis and antharcnose Spray with streptocycline 10g/100litre) to manage citrus canker
April	Diseases	Spray of copper oxychloride (3g/l)
May	Diseases	• Spray of Bordeaux mixture (1%) or copper oxychloride (3g/l) or carbendazim (1g/litre) to avoid scab
June	Diseases	• Spray of Bordeaux mixture (1%) or copper oxychloride (3g/l) or carbendazim (1g/litre) to avoid scab
July	Diseases	• Spray the crop with copper oxychloride (3g/l) + streptocycline (10g/100litre) to manage from anthracnose and canker
August	Diseases	• Spray the crop with copper oxychloride (3g/l) + streptocycline (10g/100litre) to manage from anthracnose and canker
September	Diseases	• -
October	Diseases	• Spray the crop with copper oxychloride (3g/l) + streptocycline (10g/100litre) to manage from canker
November	Diseases	• Spray the crop with copper oxychloride (3g/l) + streptocycline (10g/100litre) to manage from canker of affected portion and apply Bordeaux paint
December	Diseases	 Spray of Bordeaux mixture (1%) or copper oxychloride (3g/l) for the management of foot rot / gummosis Spray with streptocycline 10g/100litre) to manage citrus

	1
	l canker
	Calikei

3. Litchi

Month	Group	Operations
January	Diseases	• Spray of Bordeaux mixture (1%) or copper oxychloride
		(3g/l) for the management of leaf blight
February	Diseases	• -
March	Diseases	• If symptoms of leaf and panicle blight or twig blight and anthracnose are visible, spray the foliage with carbendazim (1g/l) or copper oxychloride (3 g/l)
April	Diseases	• If symptoms of leaf and panicle blight or twig blight and anthracnose are visible, spray the foliage with carbendazim (1g/l) or copper oxychloride (3 g/l)
May	Diseases	• Spray of Bordeaux mixture (1%) or copper oxychloride (3g/l) or carbendazim (1g/litre) to avoid scab
June	Diseases	• Spray of Bordeaux mixture (1%) or copper oxychloride (3g/l) or carbendazim (1g/litre) to avoid scab
July	Diseases	 Spray the crop with copper oxychloride (3g/l) to manage from anthracnose Apply castor cake or neem cake as manures along with biocontrol agents like <i>Trichoderma harzianum</i>, <i>T. viride</i>, <i>Pseudomonas fluorescens</i> etc. Drench rhizosphere soil with hexaconazole (1ml/litre) or carbendazim (1 g/litre) if the symptoms of root rot are visible
August	Diseases	 Spray the crop with copper oxychloride (3g/l) to manage from anthracnose Drench rhizosphere soil with hexaconazole (1ml/litre) or carbendazim (1 g/litre) if the symptoms of root rot are visible
September	Diseases	• -
October	Diseases	•
November	Diseases	•
December	Diseases	• Spray of Bordeaux mixture (1%) or copper oxychloride (3g/l) for the management of leaf blight

4. Guava

Month	Group	Operations
January	Diseases	• Spray of Bordeaux mixture (1%) or copper oxy chloride (3g per litre) or Pyroclostrobin + metiram (Cabrio Top) @ 1g/litre of water for the management of styler end rot and fruit canker
February	Diseases	• -
March	Diseases	• -
April	Diseases	• -
May	Diseases	• -
June	Diseases	• Spray of Bordeaux mixture (1%) or copper oxy chloride (3g per litre) or Pyroclostrobin + metiram (Cabrio Top) @ 1g/litre of water for the management of fruit canker
July	Diseases	• Spray of Bordeaux mixture (1%) or copper oxy chloride (3g per litre) or Pyroclostrobin + metiram (Cabrio Top) @ 1g/litre of water for the management of fruit canker
August	Diseases	• -
September	Diseases	• Spray of Bordeaux mixture (1%) or copper oxy chloride (3g per litre) or Pyroclostrobin + metiram (Cabrio Top) @ 1g/litre of water for the management of fruit canker
October	Diseases	• Spray of Bordeaux mixture (1%) or copper oxy chloride (3g per litre) or Pyroclostrobin + metiram (Cabrio Top) @ 1g/litre of water for the management of fruit canker, if prevalent
November	Diseases	• Spray of Bordeaux mixture (1%) or copper oxy chloride (3g per litre) or Pyroclostrobin + metiram (Cabrio Top) @ 1g/litre of water for the management of fruit canker, if prevalent
December	Diseases	• Spray of Bordeaux mixture (1%) or copper oxy chloride (3g per litre) or Pyroclostrobin + metiram (Cabrio Top) @ 1g/litre of water for the management of styler end rot and fruit canker

5. Pomegranate

Month	Group	Operations
January	Diseases	• -
February	Diseases	• -
March	Diseases	• -
April	Diseases	• -
May	Diseases	 Spray of carbendazim (0.5g/l) + streptocycline 10g/100litre) to manage leaf spot and bacterial spot in the 1st week Spray the crop with copper oxychloride (3g/l) + streptocycline (10g/100litre) to manage from bacterial blight in the third week
June	Diseases	• Spray of carbendazim (1g/l) or mancozeb (2.5g/l) or to avoid different leaf spots and repeat after 15 days
July	Diseases	 Spray the crop with copper oxychloride (3g/l) + streptocycline (10g/100litre) to manage from bacterial blight in the first week Spray with carbendazim (1g/l) or hexaconazole (1ml/l) for fruit rot and anthracnose
August	Diseases	• Carbendazim (1g/l) or difenconazole 0.5ml/l) or mancozeb (2.5g/l) for the management of fruit rot
September	Diseases	• -
October	Diseases	• -
November	Diseases	• -
December	Diseases	• -